
Repairing intricate faults in code using machine
learning and path exploration

Divya Gopinath Kaiyuan Wang Jinru Hua Sarfraz Khurshid

The University of Texas at Austin

{divyagopinath,kaiyuanw,lisahua,khurshid}@utexas.edu

Abstract—Debugging remains costly and tedious, especially for
code that performs intricate operations that are conceptually
complex to reason about. We present MLR, a novel approach for
repairing faults in such operations, specifically in the context of
complex data structures. Our focus is on faults in conditional
statements. Our insight is that an integrated approach based on
machine learning and systematic path exploration can provide
effective repairs. MLR mines the data-spectra of the passing and
failing executions of conditional branches to prune the search
space for repair and generate patches that are likely valid beyond
the existing test-suite. We apply MLR to repair faults in small
but complex data structure subjects to demonstrate its efficacy.
Experimental results show that MLR has the potential to repair
this fault class more effectively than state-of-the-art repair tools.

Keywords- program repair, semi-supervised learning, decision-
tree learning, JPF, data-structures, condition faults.

I. INTRODUCTION

Debugging is usually a tedious and error-prone process.

Recent years have seen the introduction of several novel

techniques that automate the two key tasks in debugging:

(1) identifying the faulty lines of code, termed fault lo-
calization; and modifying the faulty code to fix the faults,

termed program repair, which is the focus of our work. A

number of program repair techniques, e.g., those based on

evolutionary algorithms [21], applying mutations to suspicious

statements [5], performing code transformations [6], and lever-

aging repair templates [13], have been demonstrated to hold

potential. However, performing intricate repairs involving code

that operates on complex data structures remains a challenge.

The large space of possible program variants impedes the

efficiency and scalability of repair. Further, the accuracy of

the repair often is not generalizable beyond the given test-

suite [13], [17] or requires the presence of precise specifica-

tions [10].

/ / pre−c o n d i t i o n : l i s t . s i z e i s c o r r e c t
p u b l i c s t a t i c boolean a c y c l i c O r C i r c u l a r (L i s t l i s t) {

1 L i s t . Node l = l i s t . h e a d e r ;
2 i n t c n t 1 = 0 ;
3 boolean r e s = t rue ;
4 whi le ((c n t 1 < l i s t . s i z e) && (l != n u l l)) {
5 i f (l == l . n e x t) { / / Error L i s t 1
5 / / f i x : i f ((l . n e x t != n u l l) && (l != l . n e x t . p rev)){
6 r e s = f a l s e ;
7 break ;
8 }
9 l = l . n e x t ;
10 c n t 1 ++;
11 }
12 re turn r e s ;
13 }

Listing 1. List.repOK

F1 F2

F3

P1 P2 P3

P4 P5 P6

next

prev

Fig. 1. Example test suite. Tests F1, . . . , F3 fail. Tests P1, . . . , P6 pass.
In each test, node N0 is the header of the list.

We present an approach , MLR (Machine Learning based

Repair), that applies machine learning in tandem with system-

atic path exploration to produce more accurate repairs, even

on structurally complex data, while using just the given test

suite as the oracle for correctness. Our focus is on failures

due to wrong behavior caused by a faulty condition (e.g., in

an if or while statement) in the program. Recent studies have

shown that bugs in branch conditions of imperative programs

are quite common ([15], [18]). Our key insight is that mining

the data-spectra of the passing and failing executions of the

conditional branches can help prune the search space for repair

and generate patches that are likely valid beyond the existing

test-suite.

A. Motivating example
Listing 1 shows a typical example of a data-structure

method, acyclicOrCircular, of a doubly-linked list data-

structure(DLL). The list has two fields: header that points to

the first node and size that is the number of nodes in the

list. Each node has two fields, next and prev, that define the

doubly-linked structure. The method is expected to return true

only if the structure of the list is either acyclic or circular
(i.e., has a cycle that contains all nodes), and false otherwise.

The given implementation of the method fails to do so. The

method only detects self-loops (l == l.next) as cycles, but

lists with loops involving two or more nodes, such as l ==

l.next.next, are considered acyclic by the method. Further,

the check is only performed w.r.t the next field and cycles

involving the prev field go undetected. Executing the sample

test-suite (Figure 1) on the faulty method leads to the failure

of three tests (F1, F2, F3) where the lists have cycles other

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.75

453

than self-loops. It could be determined using preliminary code

analysis or with the help of fault-localization techniques ([11])

that the branch on line 5 (if (l == l.next)) is faulty.

Challenges of existing approaches.
Even if the exact location of the fault is known, it is

challenging to accurately change the code to function as

desired, specifically for programs dealing with data-structures

with complex structural properties. Most automated repair

approaches for data-structures rely on the presence of user-

defined formal specifications of correctness [10], [20]. Typical

techniques for repair perform search in the space of syntactic

transformations of the program [21]. The search space for

data-structure programs is specifically huge since at any pro-

gram point (line 5 in Listing 1), in addition to the stack vari-

ables (l), there is typically a large heap coverage (reachable

by repeated de-referencing of object pointers; l.next.next,

l.prev, l.next.prev). It is not feasible to generate non-

trivial repairs by the application of simple mutations to the

existing expressions [6].

It is difficult to repair faults in branch statements accurately,

specifically in recursive implementations of data-structures.

This is because even a single execution of the program

potentially has multiple invocations of the branch. Therefore,

the space of possible behaviors of the branch is huge. The

challenge is to determine the ideal branch behavior and the

condition expression that not only makes the given set of tests

pass but functions as expected on all possible inputs.

SemFix [17], introduced the idea of oracle-based repair to

repair condition faults; (1) oracle-mining: encodes correctness

constraints at the point of fault, (2) repair-synthesis: generates

a patch that satisfies the constraints. NOPOL [7], which

specifically focuses on condition faults, has been shown to

be effective for repairs involving small changes to basic

integer operations and has not been evaluated on data-structure

programs. Staged Program Repair (SPR) [13] employs a

heuristics-based express algorithm to determine the correct

truth sequence for conditions and subsequently generates a

patch based on fixed templates. Although SPR can handle

number of defects in benchmark programs, most of the patches

are plausible repairs not generalizable beyond the given tests.

B. Machine learning for more effective repair.
There has been a surge in the application of machine

learning and data-mining techniques in the field of software

analysis and debugging ([4], [8], [19], [14], [9]). Our

technique MLR, akin to oracle-based repair, adopts the two-

stage approach to repair condition faults; correct behavior
determination and correct condition generation. However, the
novelty of our approach is to leverage learning techniques to

improve the efficiency and accuracy of the two stages of repair

for condition faults in imperative programs. The key steps of

MLR are as follows;

(1) Ideal behavior prediction using semi-supervised learn-
ing. We employ semi-supervised learning enabled by support
vector machines, SVM [3], to predict the correct behaviors

of the faulty branch on the failing executions based on its

behavior on similar passing executions.

Our insight is that for faults in conditions, there is useful

information latent in the data-spectra of tests, i.e. distribution

of data in the state space of passing and failing executions,

which could be leveraged to determine the correct branching

behavior and the correct conditional expression. The rationale

being that a branch condition is likely to behave in the same

manner on two different invocations if they display similar

input state at that particular program point. Therefore we

hypothesize that we can guess the correct behaviors for a

branch in failing test executions based on its behaviors in

passing test executions with similar state at that program

point. This forms a typical setting for semi-supervised learning
techniques such as Support Vector Machines, wherein the

learner predicts the labels for a set of unlabeled data-points

based on their similarity to labeled data-points.

(2) Patching inaccuracies using systematic path explo-
ration. The accuracy of SVM based prediction is typically

high for linearly separable data. The behavior of branch

conditions need not conform to this. Therefore, there may be

cases where the predicted behavior is incorrect. It is difficult

to predict what type of kernels (polynomial, exponential)

might give accurate classification for the problem. Instead,

we perform systematic exploration of the paths through the
branch (enabled by Java PathFinder (JPF) [2]) to determine

the correct behaviors. We take guidance from the predicted

behavior to prune the search space for path exploration.

(3) Correct condition generation using decision-tree learn-
ing. We synthesize the condition expression that would pro-

duce the expected behavior for both the failing and passing

tests using decision-tree learning [16].

The key insight driving this idea is that an imperative branch

condition can be considered as a classifier which classifies a

given set of data into respective classes, based on the values

of their attributes. A branch condition could be considered as

a 2-way classifier with class labels +1 and -1, and the state

variables acting as the attributes. Decision-tree learning([16])

learns the most compact classifier for a given set of labeled

data, as disjunctions of conjunctions of conditions on the data

attributes. Heuristically, for a given set of labeled data, the

smallest condition that can classify the data accurately tends

to be the most generalizable. We hypothesize that it is highly

probable that a compact decision-tree built using the inputs

encountered in the given tests would be equivalent to the

globally valid repair.

MLR generates the following alternate condition for the

branch on line 5, if((l.next! = null)&&(l! = l.next.prev)).
This condition correctly describes the intended behavior of

the condition on Line 5 that not only works for the given

tests but any DLL with correct input size. Neither SPR nor

GenProg [21] could generate the correct repair for this faulty

program given the same test suite (Section III).

C. Contributions
We make the following contributions:

• MLR leverages learning to mine the data-spectra of
passing and failing executions to improve the effec-
tiveness of oracle-based repair.

454

Fig. 2. MLR architecture.

• We present the first application of semi-supervised
learning to predict the ideal behavior of faulty branch
conditions and employ systematic path exploration to

patch inaccuracies in the predicted behaviors.

• We present a novel idea to learn branch conditions as
compact decision-trees which have high likelihood of

being generalizable beyond the given test-suite.

• Our experiments demonstrate the usefulness of MLR to

perform intricate repairs accurately and its ability to

correct some condition faults more accurately than
state-of-the-art techniques on our data structure subjects.

II. APPROACH

This sections describes MLR’s algorithm. The inputs to

MLR are: (1) the faulty program (p), (2) the impacted branch

statement (b); we assume that the only impact of the fault is

on a single branch statement and that a mechanism to localize

the fault is available [11]; and (3) a test suite with failing tests

(f) and passing tests (p); we assume that the impacted branch

statement has some passing test coverage.

A. Ideal behavior prediction using SVM
A branch condition in an imperative program could be

represented as (b0 op0 b1 ... opn−1 bn) where bi is a boolean

predicate and opi is either a ∧ or ∨ operator. Each boolean

predicate is typically a condition in terms of the program vari-

ables, i.e. a query on the state of the program at that program

point. Every invocation or execution of the branch ei could be

characterized in terms of the valuations of the program state

variables at that program point and its corresponding behavior

or boolean branch output oi, ei :=< {vari0, ..., variv}, oi >.

The branch is executed by f failing tests and p passing tests.

There could be multiple invocations of the branch in a single

test. We could consider the set of all branch invocations in all

the tests and their respective outputs as a table,

F1:{< {var00 , ..., var0v}, o0 >, ..., < {varn0 , ..., varnv }, on >},... Ff :{<
{var00 , ..., var0v}, o0 >, ..., < {varm0 , ..., varmv }, om >} and P1:{<
{var00 , ..., var0v}, o0 >, ..., < {varn‘

0 , ..., varn‘
v }, on‘ >}, ... Pp:{<

{var00 , ..., var0v}, o0 >, ..., < {varm‘
0 , ..., varm‘

v }, om‘ >}
where n,m, n‘,m‘ represent the number of invocations of

the branch in the respective failing and passing tests, oi is the

branch output encountered during the execution of the tests.

Support Vector Machines take as input a set of data-points

with binary labels, some labeled and some unlabeled, each

characterized by a fixed set of features. The above table is

fed as input to the SVM. Every invocation of the branch is

one row of input, characterized by the state variables as the

features. The output of the branch in the original execution

corresponds to the class values for passing tests (+1 for true,

-1 for false), the class values are set to 0 (unknown) for

failing executions. SVM predicts the labels of the unlabeled

points based on their spatial proximity or geometric distance

(calculated based on the feature values) to the labeled data-

points. It learns the model of the classifier as a hyperplane that

divides the data space into two groups containing data-points

with positive and negative labels respectively. The unlabeled

points are predicted to have +/- labels based on the side of

the hyperplane they lie on. The data-points which are in close

proximity to known labels are assigned high confidence of

having correct predictions while those that lie near the margin

are assigned low confidence values.

We heuristically select a set of relevant state variables to act

as the features for SVM; (1) variables that get defined and/or

updated within two edges of the faulty branch statement in the

control flow graph, (2) expressions formed by de-referencing

of every field in user-defined type variables, and (3) predicates

comparing object pointers with null and other pointers of

same type.

Applying SVM to the three failing tests in our example,

we found that labeling based on predictions made all the tests

pass. The branch condition is predicted to evaluate to true

whenever it detects a cycle while parsing the list inside the

while loop (2nd invocation of the branch for F1, and 3rd

invocations for F2 and F3 respectively).

B. Patching inaccuracies using systematic path exploration:
In case the predicted behavior does not make the tests pass,

we adopt the following iterative algorithm to progressively

relax the predicted labels on certain execution states and rerun

the tests until they pass. We relax the predicted branch outputs

on execution states where the confidence of prediction is below

a certain threshold. We then rerun the test and use JPF to non-

deterministically select the behavior of the branch on these

relaxed execution states. This process is repeated until the test

passes. The threshold is set to the minimum confidence value

of all predictions for that test in the first iteration and then

progressively updated to the second minimum one, so on.

C. Correct condition generation:
Once we obtain the correct behavior of the branch for all

the tests, the updated execution table, containing the execution

rows and the corresponding outputs of the branch for all the

tests, becomes the input to the decision-tree learner. A home-

grown implementation of the ID3 algorithm [16] is applied

to generate the classifier for class +1 or the condition of the

branch to evaluate to true.

ID3 algorithm builds the decision-tree by recursively split-

ting the given set of data in such a way that each sub-

group has a maximum of one type of class/label. It does

so by determining a test or a predicate on an attribute that

provides the maximum reduction in the entropy of the dataset

or maximum information gain. The classifier thus generated

is in the form of disjunction of conjunctions of attribute

455

TABLE I
MLR REPAIR RESULTS

Err Buggy Version Generated Repair Oracular Fix

LIST1
if (l == l.next){...} if ((l.next != null) && �

(l != l.next.prev)){...}

RBT1
while((p != null) && while((p != null) && �(p.left == null)) (ch == p.right))

RBT2
while(p != null) while((p != null) ×&& (ch == p.left))

RBT3
ch = e.parent.right ch = e.parent.right ... �if (e == p.right)

RBT4
if (e.right != null) if (e.right != null)* �&& (e.left != null)

BST1
while((x != null) && if ((x != null) && �(k < x.key)) (k < x.key))*

Oracluar Fix: �represents that generated repair is semantically equivalent to the

oracular fix. Red shows deleted code in repair. Blue shows added code in repair. *

represents repairs with heuristic refinement.

predicates. The classifier is 100% accurate on the input data

since it has 0% error threshold. The decision-tree thus learnt

for our example is ((l.next! = null)&&(l! = l.next.prev)),
which is the correct condition to detect cycles in a DLL.

We perform heuristic refinement of the generated classifier,

as a post-processing step, to prevent over-fitting to the given

test-suite. The algorithm heuristically patches the generated

condition such that the difference with the already existing

condition is minimized while still maintaining accuracy over

the test-suite. Similarly, there could be more than one possible

correct labelings that make the failing tests pass and therefore

more than one classifiers generated. The algorithm ranks the

classifiers based on a metric of compactness and prunes out

solutions with more than a threshold number of predicates.

III. PRELIMINARY EVALUATION

The purpose of our preliminary evaluation of MLR was –

(1) RQ1: To test our hypothesis about the efficacy of learning

techniques in improving the accuracy and efficiency of repair

for condition faults; and (2) RQ2: Assess the contribution of

the approach in terms of being able to correct this class of

faults more effectively than the state-of-the-art.

We evaluate our approach on the following data structure

methods with complex functionalities and properties; Doubly-

linked list’s List.acyclicOrCircular, Binary search tree’s

insert and Red-black tree’s containsValue. For each

subject, we create a test suite with full statement coverage

and branch coverage. We seeded faults in branch conditions

to simulate different types of error scenarios (Table I). Our

implementation uses SVM Light [3] in transductive learning

mode, JPF version 6.0, and a home-grown implementation

of the ID3 decision-tree learning algorithm. All experiments

were conducted in a 2.53Ghz CPU, 4GB RAM laptop running

Windows 7.0.

RQ1: Efficacy of using learning in correct behavior
prediction and condition generation. We evaluated the ef-

fectiveness of SVM based behavior prediction to accurately

predict the ideal behavior of the faulty branch for the failing

tests; Prediction Accuracy (Table II) calculated as the % of

relevant predictions that were accurate. Relevant predictions
refer to predictions for those branch invocations whose input

TABLE II
METRICS FROM SVM-BASED PREDICTIONS IN MLR

Err

Predictions based

Passing test labeling Reduction in JPF

coverage(%)
Recall(%) Precision(%)

search space(%)

LIST1 53(9/17) 100 100 100

RBT1 60(12/20) 53(8/15) 87.5(7/8) 91.6

RBT2 18.5(5/27) 60(12/20) 41.6(5/12) 3.6

RBT3 40(13/32) 42(8/19) 62.5(5/8) 94.2

RBT4 45(14/31) 100(7/7) 57(4/7) 81

BST1 68.4(13/19) 50(4/8) 50(2/4) 25

TABLE III
COMPARISON OF MLR WITH GENPROG AND SPR

Err MLR
GenProg SPR

WLoc WoutLoc
WLoc WoutLoc

Brute GA Brute GA

LIST1 � × × × × × ×
RBT1 � × × — — × —

RBT2 — × × × × × —

RBT3 � × × × — × ×
RBT4 � × × — — � �
BST1 � × × × × × —

�represents correct fix, — represents plausible fix, × represents not generating any
fix. WLoc represents providing bug location, WoutLoc represents providing the
entire search space. Brute represents Brute search strategy, GA represents Genetic

Algorithm search strategy.

state-vectors were present in the original execution and were

also encountered during the final correct execution of the

corresponding test (measured by Recall).
We observed that the prediction accuracy is highly sensitive

to the passing test coverage, behavioral diversity and the

accuracy of the original branch condition on all invocations

of the passing test executions. This is expected since the

passing executions form the basis for the predictions. Low

recall also leads to poor prediction accuracy since the data

points used for learning are not representative enough. Despite

the inconsistency in the prediction accuracy, we found that

predictions-guided pruning of search space helped reduce the

space for path exploration by JPF by more than 80% in 4

cases.

Finally, we investigate the accuracy of the condition gener-

ation by Decision-Tree learning. The generated repairs were

100% accurate for the given tests. The repairs were also

equivalent to the ideal repair in all cases except one (RBT1),

which was overfitted due to the incompleteness of the tests in

the suite to cover all possible inputs impacting the behavior

of the branch.

RQ2: Repairability. We ran the state-of-the-art repair tech-

niques, SPR and GenProg, on the same examples with the

same seeded faults and test-suites. Table III compares our

approach (MLR) with these two techniques. Given the location
of the fault, MLR is able to generate fixes for all the bugs; 5

correct and 1 plausible. GenProg is unable to generate fixes

for any of the bugs. This could be because the fix ingredients

required for these patches are not be found in any other part

of the code. SPR is able to generate a fix (correct) only for

RBT4. For RBT1 and RBT2, it does determine a behavior for

456

the faulty branch, that would make the tests in the suite pass,

but is unable to find an expression that produces that behavior.

When SPR and GenProg are allowed to modify any part of the

code, they generate fixes for more number of cases. GenProg

generates a patch for RBT1, RBT3 and RBT4 [1] that inserts

multiple lines of code. These patches make the existing tests

pass, however they alter the ideal functionality of the code.

SPR generates the correct fix for RBT4 and plausible fixes for

RBT1, RBT2 and BST1 [1]. For instance, for RBT1 the patch

bypasses the faulty while statement unconditionally, which

makes the tests in the suite pass but is not the ideal repair.

Our approach is able to determine the ideal behavior and the

ideal repair expression based on the behavior of the branch on

passing executions.

Threats to Validity and Future Extensions. We recognize that

the following factors impact the generalizability of the results,

(1) the number and size of the subject programs are small,

and they are all data structure programs; (2) the faults are

manually seeded in conditions and the fault location is known

precisely; and (3) the tests are manually created. An empirical

quantification of the minimum passing test coverage required

to obtain near accurate results could act as a guide to users

of the tool. Further, heuristic selection and prioritization of

state-predicates such as based on matching with other parts

of the code, occurrence of local variables and number of de-

references in the predicate expressions, could aid in preventing

overfitting of generated repair to the tests.

IV. RELATED WORK.

This section compares our work with recent repair ap-

proaches using machine learning.

Our previous work [9] employs machine learning to repair

incorrect Where clauses in database statements in ABAP

programs. In this paper, we have extended the idea to repair

branch conditions in imperative programs. Although the crux

of the approach is similar, there are considerable differences

between the two domains. Input to database statements are

relational tables with rows characterised by fields, which is

exactly the form of input for SVM. The behavior of the

selection for each row is independent of the others. In an im-

perative program, on the other hand, the mapping of program

state to SVM input format is not straight-forward. Each row

represents different occurrences of the branch condition during

a single execution and hence they may be dependent on each

other. This necessitates the use of JPF to explicitly execute the

code to explore subsequent states. The output of a selection

statement is always a subset of its input rows and a SAT-based

combinatorial search is employed in the previous work.

Recently proposed approaches ([14], [12]) employ learning

to mine patches from other bug-fixes. They differ from our ap-

proach in the context in which they uses learning. Prophet [14]

learns probabilistic models of correct code from a set of

successful patches in open source software repositories and

applies these models to rank patches to correct a given faulty

program. The application of learning is after the generation of

a population of candidate patches to rank the possible patches.

In MLR we apply learning to prune the search space and build

more accurate patches at the generation stage itself.

V. CONCLUSION

We introduced MLR, a novel approach for repairing intricate

condition faults in data structures programs. MLR mines the

data-spectra of the passing and failing executions of the faulty

branch to prune the search space for repair and generate

globally-valid patches. We believe MLR provides a viable

foundation for effective repair of faulty conditions which could

be integrated with existing more generic routines in the future.

VI. ACKNOWLEDGMENTS

This work was funded in part by the National Science

Foundation (NSF Grant No. CCF-1319688).

REFERENCES

[1] Comparison with genprog and spr. https://github.com/lisahua/
ICSME16-comparison/. Accessed: 2016-04-10.

[2] Java path finder. http://babelfish.arc.nasa.gov/trac/jpf.
[3] Svm. http://svmlight.joachims.org/.
[4] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Automated support for

diagnosis and repair. Commun. ACM, 58(2):65–72, 2015.
[5] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging.

In ICSE, pages 121–130, 2011.
[6] V. Debroy and W. E. Wong. Using mutation to automatically suggest

fixes for faulty programs. In ICST, pages 65–74, 2010.
[7] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic repair

of buggy if conditions and missing preconditions with SMT. In In 6th
International Workshop on Constraints in Software Testing, Verification,
and Analysis, CSTVA, pages 30–39, 2014.

[8] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. C. Rinard. Inference and enforcement of data structure consistency
specifications. In Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2006, Portland,
Maine, USA, July 17-20, 2006, pages 233–244, 2006.

[9] D. Gopinath, S. Khurshid, D. Saha, and S. Chandra. Data-guided repair
of selection statements. In 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
pages 243–253, 2014.

[10] D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program
repair using SAT. In TACAS, pages 173–188, Mar. 2011.

[11] J. A. Jones. Semi-Automatic Fault Localization. PhD thesis, Georgia
Institute of Technology, 2008.

[12] X. D. Le, D. Lo, and C. Le Goues. History driven program repair. In
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18,
2016, 2016.

[13] F. Long and M. Rinard. Staged program repair with condition synthe-
sis. In 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE, pages 166–178, 2015.

[14] F. Long and M. Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pages 298–312, 2016.

[15] M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176–205, 2015.

[16] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[17] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:

program repair via semantic analysis. In 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-
26, 2013, pages 772–781, 2013.

[18] K. Pan, S. Kim, and E. J. W. Jr. Toward an understanding of bug fix
patterns. Empirical Software Engineering, 14(3):286–315, 2009.

[19] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. 2012.
[20] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and

A. Zeller. Automated fixing of programs with contracts. In ISSTA, 2010.
[21] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically

finding patches using genetic programming. In ICSE, pages 364–374,
2009.

457

