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Abstract—Researchers have proposed many automated pro-
gram repair techniques for imperative languages, e.g. Java.
However, little work has been done to repair programs written in
declarative languages, e.g. Alloy. We proposed ARepair, the first
automated program repair technique for faulty Alloy models.
ARepair takes as input a faulty Alloy model and a set of tests
that capture the desired model properties, and produces a fixed
model that passes all tests. ARepair uses tests written for the
recently introduced AUnit framework, which provides a notion
of unit testing for Alloy models. In this paper, we describes our
Java implementation of ARepair, which is a command-line tool,
released as an open-source project on GitHub. Our experimental
results show that ARepair is able to fix 28 out of 38 real-world
faulty models we collected. The demo video for ARepair can be
found at https://youtu.be/436drvWvbEU.

I. INTRODUCTION

Automated program repair (APR) techniques have been

widely studied in the last decades. Researchers have proposed

many APR techniques for imperative languages [19], [2],

[7], e.g. Java. However, little work has been done to repair

programs written in declarative languages, e.g. Alloy. We

proposed ARepair [11], the first APR technique for Alloy. We

choose Alloy because it is used in a variety of domains [5], [6],

[20], [18], [17]. Alloy comes with a SAT-based analyzer [10]

that performs analysis in a bounded scope on the universe of

discourse. The analyzer has an evaluator that is able to evaluate

the concrete value of a given Alloy expression or formula.

Recently, a number of Alloy extensions have been devel-

oped. AUnit [8] defines the notion of unit testing in Alloy

by introducing AUnit tests, which capture the desired behav-

iors of Alloy models. MuAlloy [9], [12] defines mutation

operators for Alloy grammar and performs mutation testing

on Alloy models. MuAlloy is also able to generate AUnit

tests that kill all non-equivalent first order mutant models.

RexGen [13] designs various ways to generate semantically

non-equivalent relational expressions in Alloy. ASketch [16],

[14] is able to synthesize missing fragments of a partial Alloy

model such that all the given AUnit tests pass. AlloyFL [15]

designs various ways to locate faults in an Alloy model with

failing AUnit tests. ARepair [11] is built on top of these

previous techniques. Specifically, ARepair uses (1) AUnit tests

automatically generated by MuAlloy to capture the desired

model properties; (2) AlloyFL to locate faults based on the

failing AUnit tests; (3) ASketch to create partial Alloy models

with holes based on certain heuristics; (4) RexGen to generate

candidate expressions for completing the holes; (5) the Alloy

evaluator to validate the generated patches against tests.

This papers describes our Java implementation of ARepair,

which is a command-line tool that we have released as an

open-source project (https://github.com/kaiyuanw/ARepair).

ARepair follows the standard generate-and-validate (G&V)

approach [4], [3], which takes as input a faulty Alloy model

that triggers some failing tests and an AUnit test suite. ARepair

then searches through the candidate space and tries to fix the

model such that all tests pass. To fix the model, ARepair may

run for multiple iterations. At each iteration, ARepair applies

a change to the model such that some failing tests become

passing while passing tests stay passing. In the end, this greedy

approach either finds a patch that makes all tests passing or

fails to fix the model. We evaluate ARepair and show that it

is able to fix 28 out of 38 real faulty models.

II. EXAMPLE AND BACKGROUND

A. Java Class Diagram

Figure 1 shows a faulty Alloy model that was written by a

graduate student. The model is intended to express properties

of a Java class diagram. We show part of the model that are

relevant to the faults. Lines 1-2 declare the basic types in the

problem: a notion of "Class" (line 1: "sig" denotes a set and

introduces a type) and an "Object" class (line 2: "one" denotes

a singleton set and "extends" denotes a subset relation). Each

class may extend ("ext") at most one super class and there is

a single Object class in the Java class hierarchy. The predicate

"ObjectNoExt" in lines 3-6 should state that the Object class

does not extend any class (as described in the comment at

line 5). The student incorrectly states that for every class "c",

the Object class is not a super class of "c" following the class

hierarchy (line 6). The predicate "AllExtObject" in lines 7-10

should state that every class other than the Object class itself

is a subclass of the Object class (as described in the comment

at line 9). The student incorrectly states that for every class "c"

which are not the Object class, "c" is one of its super classes

including "c" itself. We do not show other parts of the model

because the rest of the model is correct.

B. AUnit Test

An AUnit test is a pair of a model valuation and a run

command. The valuation can be encoded as an Alloy test

predicate and the run command can have an "expect" keyword

which indicates the expected satisfiability of the test predicate.

ARepair uses AUnit tests to locate faults in Alloy models

and validate the correctness of candidate patches. Figure 2

shows two failing AUnit tests that capture some properties that
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1. sig Class { ext: lone Class }

2. one sig Object extends Class {}

3. pred ObjectNoExt() {

4. // Object does not extend any class.

5. // Correct: no Object.ext

6. all c: Class | Object !in c.^ext }

7. pred AllExtObject() {

8. // Each class expect Object is a sub-class of Object.

9. // Correct: all c: Class - Object | c in Object.^~ext

10. all c: Class - Object | c in c.*ext } ...

Fig. 1: Java Class Diagram

should not appear in the correct model. The "test1" predicate

states that the "Object" set has a single atom "Object0" and

the "Class" set consists of "Object0" and an atom "Class0".

"Object0" extends "Class0" and "Class0" extends itself. Since

the Object class has a super class, we expect "test1" to

be unsatisfiable when invoking "ObjectNoExt". The "test2"

predicate states that "Object" set has a single atom "Object0";

the "Class" set consists of "Object0", and two atoms "Class0"

and "Class1". "Class0" extends "Class1" and "Class1" extends

"Class0". Since the Object class is not a super class of

"Class0" and "Class1", we expect "test2" to be unsatisfiable

when invoking "AllExtObject". Both tests are actually satis-

fiable and thus failed due to the faults in Figure 1.

C. AlloyFL

AlloyFL is a mutation-based fault localization technique that

performs mutations on the Alloy AST node granularity [15].

AlloyFL is composed of a mutation engine, a equivalence

checker, a suspiciousness calculator and a AST node ranker.

The mutation engine supports a variety of mutation operators.

For example, unary operator insertion (UOI) inserts an unary

operator before expressions, e.g. "a.b" to "a.∼b". Binary oper-

ator replacement (BOR) replaces binary operators, e.g. "a=>b"

to "a<=>b". The equivalence checker [12] is able to detect if the

mutated model is semantically equivalent to the original model

within a given scope. The suspiciousness calculator runs all the

tests against the semantically non-equivalent mutated model

and computes a suspiciousness score based on a heuristic

formula, e.g. Ochiai [1]. Each mutable AST node is assigned

a suspiciousness score and the maximum score is used in case

multiple mutation operators apply to the same AST node. The

AST node ranker then ranks all the AST nodes in descending

order of their suspiciousness. Then, the final ranked list of

suspicious nodes are modified by ARepair to fix the bug.

III. TECHNIQUE

We briefly discuss the ARepair technique because of lack of

space. More details can be found at our technical paper [11].

Figure 3 shows different components of ARepair and how

these components are connected. ARepair takes as input a

faulty Alloy model and a set of AUnit tests. The inputs are fed

into AlloyFL, which returns a ranked list of suspicious AST

nodes as described in Section C. Sometimes, the mutation of a

suspicious node is a potential fix, in which case, ARepair ap-

plies the mutation of the most suspicious node if the mutation

makes some failing tests pass while preserving passing test

results. Otherwise, for each suspicious node, ARepair creates

holes at each level of the AST in a bottom-up fashion. Suppose

pred test1 {

some disj Obj0: Object { some disj Obj0, Cls0: Class {

Object = Obj0 and Class = Obj0 + Cls0

ext = Obj0->Cls0 + Cls0->Cls0 and ObjectNoExt[] } } }

run test1 for 3 expect 0

pred test2 {

some disj Obj0: Object { some disj Obj0, Cls0, Cls1: Class {

Object = Obj0 and Class = Obj0 + Cls0 + Cls1

ext = Cls0->Cls1 + Cls1->Cls0 and AllExtObject[] } } }

run test2 for 3 expect 0

Fig. 2: Failing AUnit Tests

a suspicious AST has D depth, then ARepair first replaces

all nodes of depth D with holes and tries to synthesize code

fragments for those holes such that some failing tests pass. If

no such patch is found, then ARepair replaces all nodes of

depth D − 1 with holes and repeats the same process. If no

patch is found for holes at depth 0, then ARepair tries the next

suspicious AST and repeats the entire process.

To make the synthesis more efficient, the structure analyzer

statically finds the type of each subnode that is replaced with a

hole, so that later we can generate a set of candidate fragments

with the same type to fill in the hole. This is crucial because

replacing a hole with a code fragment whose type is different

from the original code may result in a compilation warning.

For instance, if we want to replace "c.*ext" of type "Class" in

Figure 1 line 10 with integer "1" of type "Int", then the formula

"c !in 1" is trivially true and the analyzer raises an warning

stating that the left operand and right operand of "!in" are

always disjoint. The structure analyzer also finds the variables

in scope of each hole, and passes the variables and the hole

type to RexGen for generating candidate code fragments.

RexGen is able to generate a set of Alloy expressions

bounded by a given size [13]. It takes as input the basic

variables used to compose more complex expressions, a given

target type and a pre-defined bound, and produces as output a

set of non-equivalent Alloy expressions following the grammar

shown in [11]. The size of an expression is defined as the

number of descendant nodes in the AST representation of the

expression. ARepair sets the size of the generated expressions

for the holes in the maximum depth to S and increases the size

up to S + 3 as the depth of the holes decreases, where S can

be chosen by the user. The generated expressions are cached

by the variables in scope that are used to create the leaves and

the bounded expression size, so that RexGen does not need to

regenerated expressions for another hole if it shares the same

variables and the bounded expression size.

The set of non-equivalent expressions returned by RexGen

is fed into the synthesizer, which fills holes with the generated

expressions. Since there might be multiple holes at the same

level and the number of candidate expressions for each hole

could be over thousands, the total size of the search space is

huge. ARepair implements two search strategies, i.e. the all-

combination search strategy (AC for short) and the base-choice

search strategy (BC for short). The AC strategy partitions the

candidate expressions of each hole into k parts, i.e. from P1 to

Pk. Expressions in Pi have smaller or equal sizes compared to

expressions in Pi+1. The strategy creates a tuple of partitions

<P 1
i , P 2

j , ...> by taking the Cartesian product of partitions
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Fig. 3: ARepair Component Diagram

across all holes, where P y
x denotes the xth partition of hole y.

Tuples with partitions of smaller x are ranked first. Then the

strategy takes the Cartesian product of candidate expressions

across partitions in each tuple, and searches through such

combinations of expressions first. This strategy prioritizes

combinations of candidate expressions with smaller sizes.

Since the search space for AC strategy is still huge, we

set a bound on the number of combinations to try when

searching each level of holes. As soon as a combination of

expressions that makes some failing tests pass while preserving

passing test results is found, the strategy stop searching and

applies the change to the model. The BC strategy fixes the

candidate expressions of all holes except one and tries all

expressions in that hole to find the expression that makes the

most number of failing tests pass while preserving the passing

test results. The strategy then replaces the hole with the found

expression and performs the search on the next hole until all

holes are exhausted. Both strategies are greedy (to reduce the

exploration space) but they work relatively well in practice.

The test runner helps the synthesizer to validate candidate

expressions against the test suite mostly using evaluator calls

instead of the expensive constraint solving. ARepair builds a

dependency graph for each test predicate. Each test depends

on all facts, including explicit facts and implicit signature

constraints, and the predicates and functions the test tran-

sitively invokes. Initially, ARepair removes all constraints

in the model and invokes a constraint solver to obtain the

instance represented in each test predicate. For example, to

get an instance represented by "test1" in Figure 2, ARepair

removes (1) the signature multiplicity constraint ("one" in

Figure 1 line 2); (2) all explicitly declared Alloy predicates

(e.g. "ObjectNoExt" and "AllExtObject") and their invocations

(e.g. "ObjectNoExt[]" in "test1"). Then, ARepair obtains

the representing Alloy instance of "test1" by invoking "run

test1" command. The satisfiability of a test is determined by

the satisfiability of each fact and the body of the test. If any fact

or the body of the test is unsatisfiable under the instance, then

the test is unsatisfiable. Otherwise, it is satisfiable. During the

search, we know which Alloy paragraph (i.e. signatures, facts,

predicates, functions and assertions) is changed and thus can

infer the affected Alloy paragraphs, including the affected test

predicates. ARepair evaluates the affected test body and the

dependent affected facts to determine test satisfiability. This

process does not involve expensive constraint solving and it

reduces the number of evaluator calls.

The evaluator-based approach to determine test satisfia-

bility can be optimized by hierarchical caching. The idea

is to reuse the previously evaluated result of a formula if

its subformulas evaluate to the same set of values as some

subformulas evaluated before. For example, if ARepair creates

a hole to replace "c.*ext" in Figure 1 line 10, i.e. "all c:

Class - Object | c in ??". To evaluate the satisfiability of

"AllExtObject", suppose the first expression the synthesizer

tries is "none", then ARepair builds a hierarchical cache

as follows. Since "none" evaluates to ∅, ARepair creates a

mapping <"none",∅> for hole "??". Then, ARepair evaluates

the entire body of "AllExtObject", which evaluates to false

because "Class0" does not belong to the empty set, and creates

a mapping <"pred AllExtObject() {...c in ∅}",false> for

the predicate "AllExtObject". Note that the key is the string

representation of "AllExtObject" with all descendant holes

replaced by their valuations under the instance of "test2".

Next, ARepair creates a mapping <"false",false> where the

key is the boolean result of "AllExtObject" as a string and the

value is the boolean result of "test2" by evaluating the body

of "test2". If the next candidate expression of hole "??" is

"c-Class", which evaluates to ∅, then we immediately know

that "test2" evaluates to the same result as when hole "??"

is "none". Because the new keys ARepair computes based on

"c-Class" all are all in the cache, we only need to invoke the

evaluator once to evaluate "c-Class" instead of evaluating the

body of "test2". In general, the hierarchical cache reduces

the input size but increases the number of evaluator calls. In

practice, we observe speed-ups for a majority of the repair

problems, but a few problems do suffer from a slow-down.

In summary, ARepair iteratively applies candidate patches

from either AlloyFL’s mutation or the synthesizer, and makes

some failing tests pass while preserving the passing test results.

After several iterations, if all tests pass, then ARepair finds a

potential fix. Otherwise, the repair fails. The iterative approach

allows ARepair to fix models with multiple faults or a single

fault spanning multiple locations. If a potential fix is found,

a simplifier makes the fixed model look more natural to the

developer, e.g. simplifying "c-none" to "c".

IV. USAGE

In this section, we describe how users can invoke ARepair.

More details can be found on the ARepair GitHub homepage.

To repair a faulty Alloy model, run "./arepair.sh --run

-m <arg> -t <arg> -s <arg> -c <arg> -g <arg> [-e]

[-h <arg>] [-p <arg>] [-d <arg>]".

• "-m,--model-path": This argument is required. Pass the

faulty Alloy model to repair as the argument.

• "-t,--test-path": This argument is required. Pass the

AUnit test suite which capture the desired properties of the

expected model as the argument.

• "-s,--scope": This argument is required. Pass the Alloy

scope for repairing the faulty Alloy model as the argument.

The scope should be larger than or equal to the minimum

scope necessary to run all AUnit tests properly.

• "-c,--minimum-cost": This argument is required. Pass the

minimum size of the expression to generate as the argument.
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RexGen will generate expressions of the specified size for

the deepest level of the suspicious AST.

• "-g,--search-strategy": This argument is required. Pass

the search strategy to use for the internal synthesizer as the

argument. The value should be either "all-combinations"

or "base-choice".

• "-e,--enable-cache": This argument is optional. If this

argument is specified, ARepair uses the hierarchical caching

for repair. Otherwise, it does not.

• "-h,--max-try-per-hole": This argument is optional and

is used when the search strategy is "base-choice". Pass the

maximum number of candidate expressions to consider for

each hole during repair as the argument. If the argument is

not specified, a default value of 1000 is used.

• "-p,--partition-num": This argument is optional and is

used when the search strategy is "all-combinations". Pass

the number of partitions of the search space for a given

hole as the argument. If the argument is not specified, a

default value of 10 is used.

• "-d,--max-try-per-depth": This argument is optional and

is used when the search strategy is "all-combination".

Pass the maximum number of combinations of candidate

expressions to consider for each level/depth of holes during

repair as the argument. If the argument is not specified, a

default value of 10000 is used.

For each run, for each iteration, the tool reports: (1) fault

localization time; (2) the expression generation time; (3) the

search space; (4) whether the current iteration successfully

makes some failing tests pass but preserves the passing test

results; (5) whether the fix comes from the mutation or the

synthesizer; and (6) the model after the fix. Finally, the tool

reports the simplified fixed model if all tests pass. Otherwise,

the tool reports the latest state of the partially fixed model.

V. EVALUATION

We evaluate ARepair on a machine running Ubuntu 16.04

LTS with 2.4GHz Intel Xeon CPU and 16 GB RAM. We

collect 38 real faulty Alloy models with 62 individual faults.

We use the default setting to run the experiment [11]. AC

is able to fix 24 models and 31 faults. BC is able to fix 26

models and 42 faults. Additionally, AC times out (≥ 15h) for

12 models while BC finishes all models in 15h. AC is able

to fix 2 models that BC is not able to fix. BC is able to fix 5

models that AC is not able to fix. In total, ARepair is able to

fix 28 models when considering both AC and BC.

To validate the correctness of the fixed model, we check the

equivalence of the fixed model (with all tests passed) and the

correct model using both manual inspection and alloy analyzer

(under a bounded scope). We then inspect patches that are

syntactically different from human-written patches and find

that these patches are easy to understand in general. There are

rare cases that ARepair generates some complex patches that

can be further simplified through semantic reasoning.

We illustrate the repair process using the example in Fig-

ure 1. In the first iteration, ARepair finds that some mutation

applied by AlloyFL can make some failing tests passing so it

6.- all c: Class | Object !in c.^ext }

6.+ all c: Class | Object !in c.^~ext }

...

10.- all c: Class - Object | c in c.*ext }

10.+ all c: Class - Object | c.*ext - Object != c.*ext }

Fig. 4: ARepair Patch for Class Diagram

applies the BOR mutation which mutates "c in c.*ext" to "c

!= c.*ext". In the second iteration, ARepair find that another

mutation applied by AlloyFL can make fewer tests failing,

including "test2" in Figure 2, so it applies the UOI muta-

tion which mutates "Object !in c.^ext" in line 6 Figure 1

to "Object !in c.^∼ext". In the third iteration, ARepair is

able to find a patch that makes all tests pass by replacing

the left "c" in "c != c.*ext" with a synthesized expression

"c.*ext-Object". The final patch is semantically equivalent

to the correct patch written by the TA as shown in Figure 4.

VI. CONCLUSION

This paper introduces ARepair, an open-source, command-

line tool for repairing faulty Alloy models. Our experiment

shows that ARepair is able to fix 28 out of 38 real-world

faulty models we collected.
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