
Symbolic Execution for Attribution and Attack
Synthesis in Neural Networks

Divya Gopinath, Corina S. Păsăreanu
Carnegie Mellon University Silicon Valley

Moffett Field, CA 94035, USA

{divyag1@andrew.,pcorina@}cmu.edu

Kaiyuan Wang, Mengshi Zhang, Sarfraz Khurshid
University of Texas at Austin

Austin, TX 78712, USA

{kaiyuanw,mengshi.zhang,khurshid}@utexas.edu

Abstract—This paper introduces DeepCheck, a new approach
for validating Deep Neural Networks (DNNs) based on core
ideas from program analysis, specifically from symbolic execu-
tion. DeepCheck implements techniques for lightweight symbolic
analysis of DNNs and applies them in the context of image clas-
sification to address two challenging problems: 1) identification
of important pixels (for attribution and adversarial generation);
and 2) creation of adversarial attacks. Experimental results using
the MNIST data-set show that DeepCheck’s lightweight symbolic
analysis provides a valuable tool for DNN validation.

I. OVERVIEW

As deep neural networks become more widely used in tasks

of high importance, developing techniques that validate them

becomes increasingly urgent. This paper introduces a new

approach for validating neural networks based on the classic

program analysis of symbolic execution. The key insight is

to transform the network into an imperative program that is

amenable to analysis using symbolic execution. Two analyses

are presented: 1) to identify important pixels that can explain

the classification decisions made by a neural network; and 2)

to create 1-pixel and 2-pixel attacks by identifying pixels or

pixel-pairs and computing their values so the neural network

misclassifies the modified images. The two analyses apply

in synergy and provide a more scalable approach to finding

attacks. An experimental evaluation using the widely studied

MNIST dataset demonstrates the usefulness of symbolic exe-

cution in analyzing neural networks.

Although 1-pixel and 2-pixel attacks have been studied

before [5], we make the surprising new observation that neural

networks can be vulnerable to such attacks even along the

paths that follow the same activations pattern as the original

input. Such attacks went unnoticed with previous testing

techniques [4], [6], [7], which focused on generating tests that

increase the coverage of activated neurons, and hence did not

check for attacks along the same path. Furthermore, if such

attacks are shown to not exist, our tool then is able to provide

guarantees that the network is behaving as expected. A full

version of this paper can be found in [2].

We illustrate our approach on a subject neural network N ;

a fully connected 784×10×10×10×10 network, which has

been trained on all 60,000 images in the training data of the

MNIST dataset [3], and has an accuracy of 92%. Given the

trained network N , we apply our technique DeepCheckτ to

translate it to an imperative program P that has the same

behavior as the original network but is amenable to program

analysis. Figure 1(a) shows an example image I from the

standard MNIST training data, which has the predicted label

of 3 (which is the same as its true label).

A. Identifying important pixels

Given I as an input, our important pixel identification

technique DeepCheckImp executes the program P , and for the

execution path taken by I, computes for every output label, a

linear expression in terms of the input variables (784 image

pixels). The algorithm then uses the coefficients (coeff) of

the input pixels in the expression corresponding to the label

assigned by the network (3 in the case of the example), to

assign an importance score for every pixel. A pixel p1 is

considered more important than another p2, if the classification

decision is impacted more by p1 than p2. DeepCheckImp

employs three metrics; abs, co, coi, to calculate the importance

of each pixel.1. The pixels are then sorted in the descending

order of their scores. The pixels which are higher on this list

(top threshold %) are identified as being important. The insight

is that the short-listed important pixels can be held responsible

for the classification decision. A small change to the image

with respect to the important pixels, such as changing the

value of just one important pixel can have a high impact on

the classification decision, and may lead to the discovery of

adversarial examples – the new image differs from the original

image by the value of just one pixel but this makes the network

incorrectly assign a different label to this image.

Fig. 1(b) illustrates the top-5%, i.e., 39, important pixels

highlighted in green. Note, how the important pixels trace

the shape of the digit 3 and do not point to areas of the

image irrelevant to the classification, such as the background

or the edges. The top-10%, i.e., 78 important pixels (Fig. 1(c))

form a denser pattern that traces the shape of the digit 3.

This highlights that identifying important pixels based on the

coefficients of their respective expressions for the expected

label, can help explain the classification decision.

1abs: absolute value of coeff, co: actual signed value of coeff, coi: actual
value of coeff × input value.

282

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00115

(a) (b) (c) (d) (e)
Fig. 1: (a) Example image with predicted label 3. (b) Top-

5% important pixels (highlighted in green) identified by

DeepCheckImp. (c) Top-10% important pixels (green) identi-

fied by DeepCheckImp. (d) 1-pixel attack (highlighted in red)

identified by DeepChecktPA; changing the red pixel to black

changes the predicted label to 8. (e) 2-pixel attack (red) that

does include an attackable pixel for 1-pixel attack.

B. Identifying attack pixels

Conceptually, our t-pixel attack technique DeepChecktPA

aims to create a new image that differs from the original image

at t pixels, and has (1) the same activation pattern as the

original image but (2) a different label from the original image.

Specifically, for a 1-pixel attack, DeepChecktPA selects a pixel

p, makes its value symbolic ps, retains the original concrete

values for all other pixels, and constructs a constraint-solving

problem, which requires (1) execution of the same path up

to the output layer as the original image I and (2) change

in the output label from the original predicted label of I.

The constraint-solving problem consists of a simplified path

condition for image I’s execution path such that the path

condition contains only one symbolic value, i.e., ps. If the

constraint is satisfiable, a solution provides the value for pixel

p to create the 1-pixel attack image. For solving constraints,

we use the SMT solver Z3 [1].

DeepChecktPA checks whether any pixel of I can be

attacked by making one pixel symbolic at a time and checking

the resulting path condition. Figure 1(d) shows a 1-pixel attack

identified by our approach for image I; changing the red pixel

to black changes the predicted label of the image to 8. This

attackable pixel actually lies in the top-5% (top 39) important

pixels for I identified by DeepCheckImp. The rank order of

this attackable pixel in descending order of importance is 21.

For this case, focusing the 1-pixel attack on important pixels

can allow finding an attack much quicker than checking every

pixel for attackability. In fact, this image only has one 1-pixel

attack. A linear search that starts at the first image pixel (top-

left corner) and scans left-to-right takes 346 attempts to find

this attack pixel, which is over 16X the attackable pixel’s rank-

order (21). We believe important pixels can provide a practical

heuristic for a more scalable approach to create attacks.

To create 2-pixel attacks, we focus DeepChecktPA on the

important pixels identified by DeepCheckImp, specifically on

the top-5% important pixels. We make
(
39
2

)
= 741 unordered

pairs of the selected important pixels, and for each pair,

we make the two corresponding variables symbolic, so each

path condition created by symbolic execution contains exactly

two symbolic variables. Applying DeepChecktPA to the 741

pairs results in 93 unique 2-pixel attacks. 38 of the 2-pixel

attack pairs contain as an element the pixel that was earlier

Fig. 2: Attackable pixels for 1-pixel attack highlighted in red.

Fig. 3: Attackable pixels for 2-pixel attack highlighted in red.

identified for the 1-pixel attack, whereas 55 of the pairs

contain only pixels that are not 1-pixel attackable; Figure 1(e)

shows one such pair in red. The important pixels identified by

DeepCheckImp play a key role in focusing DeepChecktPA to

find a 2-pixel attack. The first attack found by DeepChecktPA

includes 2 of the 3 top-most important pixels. Thus, the search

for a 2-pixel attack for this example requires checking no more

than just
(
3
2

)
= 3 pairs.

II. EVALUATION AND FUTURE WORK

The results of applying our tool to ten images from the

MNIST data set are displayed in Figures 2 and 3. Our

experimental results indicate that it is feasible to use symbolic

execution to identify important pixels and to create 1-pixel

and 2-pixel attacks, and that important pixels enable a more

scalable approach for generating 1-pixel and 2-pixel attacks.

For example, for images of 9 out of 10 digits, a 2-pixel attack

is found by checking the 2-pixel combinations of just top-4

important pixels, i.e., a pair of pixels to attack the network is

found by checking no more than 6 pixel pairs. For details about

the experiments see [2]. For the future, we plan to evaluate

our technique on larger networks and extend it to other kinds

of networks such as convolutional neural nets.

Acknowledgement: This work was supported in part by NSF

#1549161 and CCF #1704790.

REFERENCES

[1] L. de Moura and N. Bjorner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[2] D. Gopinath, K. Wang, M. Zhang, C. S. Pasareanu,
and S. Khurshid, “Symbolic execution for deep neural
networks,” CoRR, vol. abs/1807.10439, 2018. [Online]. Available:
http://arxiv.org/abs/1807.10439

[3] “The MNIST database of handwritten digits Home Page,” http://yann.
lecun.com/exdb/mnist/.

[4] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in SOSP, 2017.

[5] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” CoRR, vol. abs/1710.08864, 2017.

[6] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroen-
ing, “Concolic testing for deep neural networks,” arXiv preprint
arXiv:1805.00089, 2018.

[7] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the 40th
International Conference on Software Engineering (ICSE). ACM, 2018,
pp. 303–314.

283

