
Learning to Optimize the Alloy Analyzer

Wenxi Wang∗, Kaiyuan Wang†, Mengshi Zhang∗ and Sarfraz Khurshid∗
∗University of Texas at Austin

{wenxiw,mengshi.zhang,khurshid}@utexas.edu
†Google Inc.

kaiyuanw@google.com

Abstract—Constraint-solving is an expensive phase for scenario
finding tools. It has been widely observed that there is no single
“dominant” SAT solver that always wins in every case; instead,
the performance of different solvers varies by cases. Some SAT
solvers perform particularly well for certain tasks while other
solvers perform well for other tasks. In this paper, we propose an
approach that uses machine learning techniques to automatically
select a SAT solver for one of the widely used scenario finding
tools, i.e. Alloy Analyzer, based on the features extracted from
a given model. The goal is to choose the best SAT solver for a
given model to minimize the expensive constraint solving time. We
extract features from three different levels, i.e. the Alloy source
code level, the Kodkod formula level and the boolean formula
level. The experimental results show that our portfolio approach
outperforms the best SAT solver by 30% as well as the baseline
approach by 128% where users randomly select a solver for any
given model.

Index Terms—Alloy Analyzer, SAT solver, machine learning

I. INTRODUCTION

Writing declarative models and specifications has numerous

benefits, ranging from automated reasoning and correction

of design-level properties before systems are built [1], to

automated testing and debugging of the implementations after

systems are built [2]. Alloy [3] is one of the well-known

scenario finding tools that model system properties. Alloy

models are declarative and expressive enough to capture the

intricacies of real systems. Alloy comes with an analyzer

which provides an automatic analysis engine based on off-

the-shelf SAT solvers [4] and it is able to generate valuations

for the relations in the models such that the properties modeled

hold or are refuted as desired. The powerful Alloy analysis has

motivated its use in a wide range of applications, including

security [5], networking [6] and UML analysis [7].

Alloy supports first-order relational logic with transitive

closure. The Alloy analyzer is able to analyze Alloy models

which consist of relational expressions/formulas under user-

defined scopes. Internally, the analyzer translates the Alloy

model into Kodkod formulas [8], which in turn is translated

into the boolean formulas. Finally, the boolean formulas are

fed into a SAT solver to find a solution which is then mapped

back to an Alloy instance for analysis. In this paper, we refer

the Alloy source code level as level 1, the Kodkod formula

level as level 2, and the boolean formula level as level 3.

Typically, the SAT solving time takes a majority of the

analysis time and is often the bottleneck for the end-to-end

time. As the scope of the model becomes larger, Alloy’s

analyzing ability drops dramatically because of the expensive

SAT solving. We observed that there is no single “dominant”

SAT solver that always win in every model. Instead, the

performance of different solvers varies by models. This paper

aims to alleviate the expensive SAT solving by helping the

users to pick the SAT solver that achieves the best performance

given an arbitrary Alloy model. The idea is to extract features

from the model and use a machine learning model to predict

which SAT solver is more likely to solve the problem in the

minimum amount of time from a set of component solvers.
Our technique has four phases: (1) feature extraction phase;

(2) feature selection phase; (3) training phase; and (4) testing

phase. In the feature extraction phase, we extract features from

all 3 levels of a given Alloy model, including the Alloy source

code level, the Kodkod formula level and the boolean formula

level. These features are all static and fast to extract. We extract

the number of different operators at the source code level (e.g.

set union), the Kodkod formula level (e.g. n-nary expression

and relational bounds) and the boolean formula level (e.g. not

gate). Additionally, we also collect the metrics of an AST,

e.g. the height, diameter and total number of nodes, across

all 3 levels. The feature extraction phase is applied before the

training and testing phase. We only focus on static features

to avoid the overhead of extracting the dynamic features from

invoking the SAT solver. In the feature selection phase, we

evaluate the importance of the features in each level and

only select the ones that make good impacts. In the training

phase, we extract features of various models with different

scopes. These models are run against multiple SAT solvers we

collected from the SAT competition [9] and all running times

are collected to label different models with various scopes.

Then, we apply Adaptive Boosting (AdaBoost) learning model

to learn the best performance SAT solver for each model and

scope. In the testing phase, we extract features of unseen

models with different scopes and use the learned model to

predict the best SAT solver and compare the result against

each component solver, the random solver selection, and the

best solver selection.
The experimental results show that our technique outper-

forms the baseline approaches significantly, including 30%

acceleration of the best on average component solver, 2.28

times the speed of random solver selection and 0.62 times the

speed of the best solver selection.
This paper makes the following contributions:

• the first (as far as we know) portfolio approach proposed

228

2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)

978-1-7281-1736-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ICST.2019.00031

Fig. 1: Architecture of the Alloy analyzer version 4.2.

for the Alloy Analyzer.

• feature extraction from three levels in the Alloy Analyzer;

and evaluated the feature importance in each level.

• results suggesting that, our machine learning based port-

folio approach is promising and can be a good direction

for further development.

II. BACKGROUND

A. Alloy Analyzer

Alloy is a declarative language for lightweight modeling and

software analysis. The language is based on first-order logic

with transitive closure. Alloy comes with an analyzer which is

able to perform a bounded exhaustive analysis under a given

scope. The input of the Alloy analyzer is an Alloy model that

describes the system properties. Users write Alloy models with

relational expressions and formulas, and provide commands

with given scopes bounded on the universe of discourse. The

analyzer translates the commands with scopes into conjunctive

normal form (CNF) and invokes an off-the-shelf SAT solver

to search for solutions, i.e. boolean instances. The boolean

instances are then mapped back to Alloy level instances that

contain valuations of all relations and displayed to the end

users. The overall architecture of Alloy Analyzer is shown in

Figure 1. The architecture can be divided into three levels: the

Alloy source code level (level 1), the Kodkod formula level

(level 2), and the boolean formula level (level 3). As of version

4.2, the Alloy analyzer invokes the Kodkod model-finder to

translate formulas between levels 2 and 3, where users write

models in the analyzer at level 1.

1) Alloy Models: An Alloy model consists of a set of

relations (e.g. signatures, fields and variables) and constraints

(e.g. predicates, facts and assertions). A signature defines a

set of atoms. A field maps each atom of a signature to other

atoms. Note that a signature is a special relation of arity 1

and a field is a relation of arity > 1. Users can also introduce

new relations using variable declarations, e.g. parameters or

let expressions. A predicate defines a boolean formula that

evaluates to either true or false. Users can use the Alloy’s

built-in run command to invoke a predicate and the Alloy

1. sig List {
2. // header: List->Node is a partial function
3. header: lone Node }
4. sig Node {
5. // link: Node->Node
6. link: one Node }
7. pred Acyclic1(l: List) {
8. all n: l.header.*link | n !in n.^link }
9. pred Acyclic2(l: List) {
10. no l.header || some n: l.header.*link | no n.link }
11. check { // command
12. all l: List | Acyclic1[l] <=> Acyclic2[l]
13. } for 6

Fig. 2: An example Alloy model that checks if two different

ways of modeling acyclicity constraint on a list are equivalent.

analyzer either returns an instance if the predicate is satisfiable

or reports that the predicate is unsatisfiable. A fact is a boolean

formula that is implicitly enforced to be true by the Alloy

analyzer. An assertion is a boolean formula that is used with

the built-in check command to check if any counter example

can refute the asserted formula. If the assertion is valid, then

no counter-example is found; otherwise, an counter-example

is reported. All analysis are performed in a bounded scope.

Figure 2 shows an Alloy model which checks if two

acyclicity predicate of a list (Acyclic1 in lines 7-8 and

Acyclic2 in lines 9-10) are semantically equivalent. The

signature List (lines 1-3) declares a set of list atoms. The

signature Node (lines 4-6) declares a set of node atoms. The

header field (line 3) is a partial function and maps each list

atom to at most one node atom. The link field (line 6) is a

function and maps each node atom to exactly one node atom.

Acyclic1 states that for every node n which is reachable from

the parameter list l’s header following zero or more traversals

along the link, n is not reachable from itself following one or

more traversals along the link. Acyclic2 states that either

the parameter list l has no header or there exists some node

n reachable from l’s header following zero or more traversals

along the link such that n does not have a subsequent node

along the link. The check command (lines 11-13) checks

if Acyclic1 and Acyclic2 are semantically equivalent for

every list l up to 6 lists and 6 nodes.

2) Kodkod Translation: Kodkod [8] is an efficient SAT-

based model finder which is able to specify partial solutions,

i.e., a priori partial but exact knowledge about a problem’s

solution. It is able to effectively detect and break symmetric

formulas. Internally, Kodkod translates Alloy code into Kod-

kod formulas, which is then translated to boolean formulas and

fed into a SAT solver. Kodkod achieves symmetry breaking by

a symmetry detection algorithm that works in the presence of

partial solutions, a sparse-matrix representation of relations,

and a compact representation of boolean formulas. These

techniques make Kodkod effective in translating relational

logic into boolean formulas and alleviating the burden of

existing SAT solvers by removing redundant constraints.

Note that Kodkod converts the scope of Alloy commands

with the notion of relational bounds. A bounded relational

specification is a collection of constraints on relational vari-

229

Fig. 3: Translation from relational logic to CNF in Kodkod

ables that are bounded by relational constants (i.e., sets of

tuples). All bounded constants consist of tuples that are drawn

from the same finite universe of discourse. The upper bound

specifies the tuples that a relation may contain; the lower

bound specifies the tuples that the relation must contain. Thus,

the scope of the command in an Alloy model is translated into

the relational bounds with lower bound of 0 and upper bound

of the given scope. For the example in Figure 2, the scope 6

is translated such that Kodkod will only consider the search

space of each signature from 0 to 6 atoms.

The translation from Kodkod formulas to boolean formulas

refers to level 2 and level 3, respectively in Figure 1. The

translation process inside Kodkod is depicted in Figure 3.

The Kodkod formula and bounds are firstly simplified and

optimized by symmetry breaking and skolemizing, which

tighten the bounds and eliminate the top-level predicates. The

optimized relational formula and bounds are then translated

into a circuit, which are further augmented with a symmetry

breaking predicate that eliminates any remaining symmetries.

Finally the optimized circuit is translated to CNF formula.

Note that the part above the horizontal dash line in Figure 3

corresponds to level 2 in the Alloy analyzer, while the part

below the dash line corresponds to level 3.

3) Back-end SAT Solvers: After the translation to boolean

formulas in Kodkod, off-the-shelf SAT solvers can be used

to solve the boolean formulas. The input of the SAT solver

is a formula ψ in CNF, that is, a conjunction of clauses.

Each clause c consists of a disjunction of literals. A literal

� is either a variable b, or its complement ¬b. For instance in

Example II.1, CNF formula ψ1 includes two clauses c1 and

c2 where four variables b1, b2, b3 and b4 are included.

Example II.1. ψ1 = c1∧ c2; c1 = b1∨¬b3; c2 = b2∨ b4∨ b3;

In the last decades, the performance of SAT solvers has

increased dramatically with the invention of advanced search-

ing and learning strategy, and the data structures that allow

efficient implementation of search space pruning. However, the

SAT solving ability is still the core challenge and bottleneck

for applications like the Alloy analyzer. Therefore, reducing

the SAT solving time is an important aspect in improving

the application user experience. To achieve this, one way is

to increase the solving efficacy of a particular SAT solver.

Another way is to integrate the solving strength of different

solvers to introduce a “solver” which is more powerful than

any of the component solvers.

The International SAT Solver Competition [9] is an es-

tablished series of competitive events aiming at objectively

evaluating the progress in state-of-the-art procedures for solv-

ing boolean satisfiability (SAT) instances. Over the years, the

competitions have significantly contributed to the fast progress

in SAT solver technology. Our idea is to combine the state-

of-the-art SAT solvers in the competition to propose a more

powerful portfolio SAT solver for the Alloy analyzer.

B. Portfolio Solvers with Machine Learning

The essential problem behind the portfolio solver develop-

ment is the algorithm selection problem. The “No Free Lunch”

(NFL) theorems [10] state that no algorithm can be the best

across all possible problems and that on average all algorithms

perform the same. This makes the algorithm selection essential

for improving the problem solving capability. The idea is

to select different algorithms best for different parts of the

problem space.

In the area of combinatorial search problems, such as

constraint satisfaction problems (CSP), satisfiability (SAT) and

satisfiability modulo theories (SMT) problems, solvers indeed

comply with the NFL theorems and many portfolio solvers are

proposed in response to that trying to gain the optimal world.

There is a trade-off between risk (the variability in solving

performance) and reward (the expected solving performance)

that we need to make a choice. An efficient portfolio is the

one that has the highest possible reward for a given level of

risk, or the lowest risk for a given reward [11].

The searching in solvers is usually very complicated and

unpredictable in different cases even to the authors who invent

those solvers. Given this, finding a way to generalize the

searching and solving behaviors of the solvers in different

problem cases with the big statistical data they produce during

their solving history seems promising. In addition, classifying

the component solvers based on their outperformed solving

history in certain input problem instances to make them work

only in their specialties is very demanding in portfolio solvers.

Nevertheless, this is under the assumption that the solvers

would behave similarly in similar recognized problem cases.

Given the above two points, machine learning approach, which

uses statistical techniques to give systems the ability to “learn”

with data, without being explicitly programmed, are highly

suitable for developing portfolio solvers.

III. MOTIVATION

Table I shows the run time result (time in seconds) among

top 5 solvers in the International SAT Competitions

2018, namely MapleLCMDistChronoBT (MapleL1),

Maple_LCM_Scavel_fix2 (MapleL2), Maple_CM (MapleC1),

cms55-main-all4fixed (cms55), and Maple_CM_ordUIP

(MapleC2) in order of ranking in the competition. The Alloy

230

TABLE I: Solving time in seconds for sample Alloy models

with different SAT solvers.

Model cms55 MapleC1 MapleC2 MapleL1 MapleL2 Optimal
abstMem 49.7 37.6 47.3 80.7 300 37.6
addrsB1h 45.2 14.8 17.1 12.3 32.4 12.3
filesystem 69.7 88.7 87.7 46.2 25.0 25.0
grandpa1 3.3 14.6 17.3 14.2 26.9 3.3

hotel1 40.1 10.7 12.4 94.8 62.1 10.7
lists 78.1 50.5 59.1 124.9 91.8 50.5

p300hot 27.2 104.7 103.7 149.5 300 27.2

sum 313.3 321.7 344.6 522.4 838.1 166.6

models we use are from the sample models in the Alloy

4.2 distribution. abstMem models the abstract memory and

we use the check command check$2 with scope 30 for

solving. addrsB1h models the address book and we use the

check command delUndoesAdd with scope 11. filesystem

models a file system and we use the check command check$1

with scope 11. grandpa1 models the grandpa puzzle and

we use the check command NoSelfGrandpa with scope 42.

hotel1 models guest accessing rooms in a hotel and we use

the check command NoBadEntry with scope 9. p300hot

models possible intruders in a hotel and we use the check

command NoIntruder with scope 13.

We have the following three observations based on the

results in Table I: 1) there is no best solver in all cases;

and each solver could be the best for certain cases. 2) the

solving time differs quite a lot among the solvers, although

the solving behaviors of MapleC1 and MapleC2 are similar.

The ideal optimal portfolio solver would take 166.6 seconds,

which outperforms each component solver dramatically. 3) the

solver that wins in a majority of times in the competition does

not always perform the best for a majority of our Alloy model

samples. This result is consistent with our further experimental

results in Section V. All of the above observations makes

selecting the best SAT solver for different Alloy models

even more important. Moreover, the portfolio approach would

reduce the end to end time of Alloy users by selecting the

fastest solvers for models with larger scope, which helps the

users to gain more confidence in the checked model properties.

IV. BACK-END SAT SOLVER SELECTION

We take the solver selection in our portfolio approach as

the classification problem using supervised machine learning

strategy. We aim to classify each component solver based

on the problem cases in which it wins. To make fully use

of the machine learning techniques, we need to feed it with

enough sample cases whose features are extracted from cor-

responding Alloy models. Additionally, we use the CNF files

translated from these Alloy models by Kodkod as the input

of different SAT solvers and collect the SAT solving time.

The outperforming solvers serve as the predicted labels for

the machine learning classifiers. Finally, we use the collected

data to train machine learning models and try to avoid the

over-fitting issues. The machine learning models can be then

used to predict the best solvers for unseen models.

A. Case Generation

As mentioned in Section II, the scope in each command

sets the bound of each signature in Alloy model. Therefore,

as the scope in the Alloy models increases, the complexity of

the problem grows exponentially which becomes a challenge

even for the most advanced SAT solvers. In order to obtain

more data and models with different complexities, we not only

collect all different sample models from Alloy distribution and

existing works [12], [13], but also use various scopes for the

same model. For each model, we increase the scope of one

signature by one at a time, until the scopes of all the signatures

reach to the maximum scope we set up. In this case, for

one Alloy model with c commands and f signatures, with

the initial overall scope for all signatures is, and maximum

scope ms, there are c∗ (ms− is+1)f potential sample cases.

Note that the cases here refers to the CNF input files generated

from different Alloy models with different scopes. Each case is

indexed with m_c_s where m refers to the Alloy model name,

c refers to the command name and s refers to the scope.

B. Feature Extraction

We extracted the features from all three levels in Alloy

as shown in Figure 1, aiming to get the machine learning

model a complete picture of how the input Alloy models look

like in three perspectives. Note that we only collect the static

features which cost little overhead for our portfolio solver. We

also evaluate the feature extraction time, as well as how the

features in each level contribute to the portfolio approach in

Section V. Details about how we extract the features in each

level are illustrated in the following Sections IV-B1, IV-B2

and IV-B3. In addition, we discuss the feature refinement in

Section IV-B4.

Fig. 4: The General AST Node Classification in Alloy

1) Feature Extraction in Level 1: We collect the features in

level 1 (denoted as X) from the Abstract Syntax Tree (AST) at

the Alloy source code level to capture the model characteristics

at a higher level.

Figure 4 shows the general AST structure of an Alloy

model. Note that we distinguish each node with each other

even though they are in the same kind. For instance, the

“expr” node under the “fact/assert” node is different from the

231

“expr” node under “function/predicate” node. The reason is

that we want to collect more detailed information which may

help the machine learning techniques learn the internal rules.

Table II shows specifically how the expressions (“expr” node

in Figure 4) look like. We further differentiate the expressions

(Expr) from the ones that return a boolean value which we call

formulas (Form). For detailed Alloy grammars, please refer to

the Alloy tutorials [14].
We count the occurrence number of each node in Figure 4

and the occurrence of each kind of operators in normal

expressions and formulas respectively. In addition, the height,

the diameter, and the total node number of the AST, together

with the scope generated in Section IV-A are also extracted as

features in this level. There are in total 123 features. Note that

different commands in the same Alloy model invoke different

parts of the AST. Thus, the extracted features are also different

for different commands.
2) Feature Extraction in Level 2: We collect the features in

level 2 (denoted as Y) from the AST of the simplified Kodkod

formulas, and the simplified relational bounds in Figure 3.

The goal is to capture the model complexity information

in the level just before the Kodkod formulas are translated

into boolean formulas. The feature kinds extracted from the

Kodkod formulas are similar to the ones in level 1 but

with different operator types. Additionally, AST nodes at the

Kodkod formula level contain relational bound which are

different from the ones in Alloy source code level.
We extract features from the Kodkod ASTs based on the

node types. More details of the Kodkod AST node types can

be found in the the Kodkod documentation [15]. We choose

42 features in total which fall into four categories:

• The total number of expressions, the total number of

integer expressions, the total number of formulas; the

total number of the AST nodes; the height of the AST;

the diameter of the AST.

• The number of constants, variables and declarations.

• The ratio of the integer expressions and expressions, and

the ratio of the quantified formulas and any formulas;

the ratio of the expressions and formulas; the ratio of the

relations and predicates.

• The number of each specific kind of expressions, formu-

las and declarations.

The relational bound in Kodkod defines the bound on each

relation. The number of each relation in different Alloy model

is different. In addition, there is no natural order in the

relational bounds. In order to extract features for machine

learning models, we need to properly convert the relational

bounds into a fixed length feature vector. We sort the relational

bounds in descending order, with the intuition that larger

bound values indicate a higher complexity of the models.

Therefore, keeping larger bound values is better than keeping

smaller bound values. Then, we make the feature vectors fixed

length � by doing the following steps. For models that have

shorter feature vectors (derived from the bound values), we

append zeros to the end of the feature vectors. This strategy

can be interpreted in a way that the bound of each non-

TABLE II: Expressions in Alloy Abstract Syntax Tree

Expression Descriptions
Call Expr/Form predicate/function invocation

quant
Expr sum, comprehension
Form all, no, some, one, lone

list
Expr disjoint, total order
Form and, or

binary
Expr

→, . , <: , :>, ++, set operators(+, -, &),
arithmetic operators (plus, minus, *, /, remainder, �, �, ≫)

Form =, !=, implies, < , <=, >, >=, in, !in, and, or, iff

unary
Expr set, lone, one, some, exactly, ∼, ˆ , *(transitive closure)
Form lone, one, no, some, not

ITE Expr/Form implies else

existing signature is zero. For models that have longer feature

vectors, we use the top � bound features and truncate the

remaining features. Formally, we introduce a sorting function

S([bi1 , bi2 , .., biB]) as

S([bi1 , bi2 , .., biB]) = [bj1 , bj2 , .., bjB],

where [bj1 , bj2 , .., bjB] is a list of relational bounds such that

∀jx, jy ∈ {j1, j2, .., jB}(x ≤ y ⇐⇒ bjx ≥ bjy)

The relational bound feature vector extraction function is

defined as

Jw(S([bi1 , bi2 , .., biB])) =
{
[bj1 , bj2 , .., bj�], |B| ≥ �

[bj1 , bj2 , .., bjB] ◦ 0�−B , |B| < �

where ◦ 0�−B means padding � − B zeros after the corre-

sponding feature vectors to length �.

Besides the feature vectors derived from the bound values,

we also take 1) the total bound value of all the relation nodes

in AST; 2) and the ratio of the total bound and the relations,

as two additional bound features.

3) Feature Extraction in Level 3: The features in level

3 (denoted as Z) are extracted from the CNF formula in

Figure 3, which includes the total number of boolean variables

and clauses respectively, and the ratio of the variable number

and clause number. Note that, the reason we do not extract

features from the simplified circuits after the further symmetry

breaking (refer to Figure 3) is that traversing the heavy circuits

is exponentially time-consuming, even more expensive than

the whole translation time from level 1 to level 3.

4) Feature Refinement: Some features we collected from all

three levels are the same across all models and thus we assume

these features would have less opportunity to provide useful

information for the machine learning classifiers to differentiate

models with different complexities. We remove these features

from our feature list.

Furthermore, we investigate how the features in each level

contribute to the machine learning models based on ablation

studies. We select the features which make positive contri-

bution to the prediction results. The experimental results are

shown in Section V.

232

TABLE III: Format of Raw Data.

m_c_s X1 ... Xxn Y1 ... Yyn Z1 ... Zzn S1 ... Ssn Label

t1 e11 ... e1xn f1
1 ... f1

yn g1
1 ... g1

zn st11 ... st1sn s1

t2 e21 ... e2xn f2
1 ... f2

yn g2
1 ... g2

zn st21 ... st2sn s2

t3 e31 ... e3xn f3
1 ... f3

yn g3
1 ... g3

zn st31 ... st3sn s1

t4 e41 ... e4xn f4
1 ... f4

yn g4
1 ... g4

zn st41 ... st4sn s3

...

C. Data for Learning

Table III gives the format of our raw data. Each data sample

corresponds to a case (m_c_s) which includes the values for

each feature type X, Y, and Z, the solving time of each

component solver (S) and the solver that wins for that case

according to the solving time (Label). The format of the input

training data for machine learning is the raw data sample

excluding the solving time columns (S).

In this paper, the solving time is the most important target

we want to optimize. However, sometimes the solving time for

multiple solvers varies only in a couple of seconds. Moreover,

the small solving time difference might be due to many factors

such as I/O and machine workload. To mitigate this issue,

we setup a solving time threshold to determine if multiple

solvers perform similarly in each sample case. The threshold

is defined as follows. We first find the minimum solving time

among all component solvers for each sample case (indexed

by i), which is denoted by mst = min(sti1, ...st
i
sn). Then,

we choose a percentage p and compute a so called “relative”

solving time rt(p) = mst ∗ (1 + p) which we treat as one

maximum solving time under which multiple solvers perform

equally well. Next, we choose an absolute value v and compute

a so called “absolute” solving time at(v) which we treat as

another maximum solving time under which multiple solvers

perform equally well. Finally, we compute the threshold as

t = max(rt, at). Note that all the solving time is in seconds.

We use the threshold ft to filter out the samples where the

solving time of all SAT solvers is below ft. For example,

suppose we have a sample that includes the solving time vector

[1.8, 0.9, 1.2] of three component solvers, with p = 10 and

v = 1. The minimum solving time is 0.9, thus rt(p) = 0.99,

at(v) = 1.9, and ft = 1.9. Since all the three solving

times (1.8, 0.9 and 1.2) are less than ft, this sample will be

eliminated from our dataset.

Additionally, we use the threshold to decide fairly if the

machine learning model selects the right solver. Suppose we

have a sample that includes the solving time vector [18, 19,

300] of three component solvers s0, s1 and s2, with p = 10
and v = 1, and ft = 19.8. Assume that the classifier predicts

s1 as the good solver. Since the solving time of s0 and s1 are

both less than the threshold, we treat that the classifier chooses

the correct solver.

D. Learning and Overfitting Mitigation

We run the supervised machine learning of classification in

four steps. Firstly, we divide the labeled dataset into training

and test data. Secondly, we pick the appropriate kinds of the

machine learning algorithms for the classification problem.

Thirdly, we use the training data to train the selected classi-

fiers. Finally, we use the test data with the actual labels and the

labels predicted by the classifiers to evaluate the performance

and get the prediction accuracy. In all these steps, we try to

mitigate the over-fitting problem, which is the main concern

when using machine learning techniques, to make our portfolio

approach more robust and applicable.

Firstly, we apply k-fold cross-validation which is a powerful

preventative approach against over-fitting, to divide and train

the labeled dataset. Cross-validation allows us to tune hyper-

parameters with only the original training dataset. This can

keep the test set as a truly unseen dataset for selecting the

final model.

When applying the machine learning models, we try to

reduce the complexities of all the learning models. Firstly, we

choose classic supervised learning models which are simple

and use ensembling strategies such as Bagging and Boosting
[16]. Our selected classic supervised learning models are K-
Nearest Neighbor (K-NN) [17], Logistic Regression (LR) [18],

Support Vector Machine (SVM) [19], Decision Tree (DT) [20],

Multi-Layer Perceptions (MLP) [21], AdaBoost (ADA) [22]

and Gradient Boosting (GBT) [23]. We do not use complex

deep learning models such as Convolutional Neural Network
or Recurrent Neural Network.

Furthermore, we conduct fine-grained model complexity

reduction according to the characteristics of each model.

Specifically, for tree-based models such as DT, we limit the

maximal tree depth, the maximum number of leaf nodes and

the minimum number of samples in a leaf node. We also utilize

post-prune technology to simplify the tree. For neural network

models such as MLP, we only set one hidden layer and ensure

that the hidden layer size is smaller than the input layer size.

We also use the early stopping mechanism, which terminates

the training process when the fitness score does not improve

any more. For regression-based models such as LR, we make

use of L2 Regularization to penalize the large coefficients. For

K-NN, we set a large K to reduce its sensitivity to noise data.

V. EXPERIMENTAL SETUP

To evaluate our portfolio solver, we answer the following

research questions:

• RQ1: How does each solver in the SAT competition

perform on our dataset? How should we select the com-

ponent solvers to use in our portfolio solver?

• RQ2: How does the scope affect the performance of each

component solvers?

• RQ3: How do the features in each level affect the per-

formance of our portfolio solver? How should we select

the feature level?

• RQ4: How much does our portfolio solver improve,

compared to each component solver, the random selection

approach, and the best selection approach?

• RQ5: How do different machine learning models affect

the performance of our portfolio solver?

233

A. Subjects

As mentioned in Section IV-B1, since different commands

of the same model can be modeled as different abstract syntax

trees in Alloy, in the experiment, we take commands of

Alloy models as our subjects. We only consider the check

commands and ignore the run commands. The reason is that

the run commands are typically much easier to solve because

it mostly does not invoke all formulas in the model. Totally,

we collect 119 Alloy models, where 103 models are collected

from the sample dataset of Alloy analyzer release 4.2, and 16

models are collected from existing work [12]. Finally, we find

69 check command subjects from these models.

B. Metrics

We evaluate the effectiveness of our portfolio approach

using the following three metrics. The first one is the accuracy

of predicting the fastest solver. The second one is the abso-

lute solving time of our portfolio approach and the baseline

approaches. The third metric is the speedup ratio between the

portfolio approach and the baseline approaches. Note that we

set the thresholds (as introduced in Section IV-C) as p = 10
for the relative threshold rt(p), and v = 1 for the absolute

threshold at(v).

C. Experimental Protocol

1) Solver Candidates: We select five state-of-the-art SAT

solvers from the SAT competition 2018 as our candidate

solvers, which is described in Section III.

2) Case Suite: Section IV-A mentioned the potential cases

given the number of commands and signatures in each Alloy

model, the maximum scope ms and the initial scope is. Here,

we set the maximum scope to 40. In addition, since the sample

case (typically the CNF file) generation takes time, we also

set the timeout of the case generation to 60 seconds. In total,

we generated 7376 cases under this timeout and we refer these

cases as the whole case suite. We run all 5 candidate solvers

over the whole case suite, setting the timeout of SAT solving as

300 seconds. For cases where the solver performs erroneously

(like segmentation fault), we set the corresponding solving

time as 600 seconds.

Note that we set the p in the relative threshold rt(p) to

10%, and the v in the absolute threshold at(v) to 1 second,

which aims to remove the cases with poor discriminability of

solvers’ performance. With these two thresholds, we filtered

out 3729 cases in which all the candidate solvers have almost

no solving time difference. These cases also included the cases

in which all the candidate solvers timed out. The remaining

case suite contains in total 3647 cases and we refer to this

suite as the refined suite. Note that both the whole and refined

suites contain 69 Alloy subjects.

3) Platform: We conduct all our experiments on Ubuntu

Linux 16.04 with a Intel Core-i7 6700 CPU (3.40 GHz) and

16GB RAM.

TABLE IV: Performance of the Candidate Solvers

Solver
Overall Time(s)

Outperformance
Errors

Name ID Num Percent (%)
cms55-main-all4fixed s0 659590 1997 55 0

Maple_CM s1 567402 666 18 3
Maple_CM_ordUIP s2 567291 632 17 3

MapleLCMDistChronoBT s3 662575 469 13 0
Maple_LCM_Scavel_fix2 s4 836180 287 8 205

VI. RESULT ANALYSIS

A. RQ1: Candidate Solver Performance

Table IV depicts the performance of individual candidate

solver (labeled by ID) on the whole case suite. To be specific,

the Overall Time presents the overall solving time (in

seconds) in all cases, Outperformance shows how each

solver beats others on the number and percentage of cases,

respectively, and Errors indicates the number of cases

where the solver performs erroneously. From Table IV, we

can observe that solver cms55-main-all4fixed outperforms on

more cases (i.e. 55%) than others. However, interestingly,

its overall solving time is only ranked at the third place.

This implies that cms55-main-all4fixed may lose much in the

cases it underperforms. Maple_CM and Maple_CM_ordUIP
shows similar performance in term of all the indicators, where

Maple_CM performs slightly better in term of the amount of

the cases, while Maple_CM_ordUIP performs slightly better

in term of the overall time. Moreover, despite of the winner in

SAT competition, MapleLCMDistChronoBT only ranked the

fourth place in term of the overall solving time as well as the

number of cases. Lastly, Maple_LCM_Scavel_fix2 performs

the worst in terms of all three indicators.

Figure 6 shows the similarity in each combination of two

candidate solvers (denoted by the corresponding solver ID),

where the similarity is determined with the relative threshold

rt(p) and the absolute threshold at(v). We set two pairs of

the thresholds for the similarity analysis. One is p = 10
and v = 1; the other one is p = 20 and v = 2. The

similarity is the percentage of the cases of which the solving

time is within the determined thresholds. We can observe

from Figure 6 that, Maple_CM and Maple_CM_ordUIP
shows the highest similarity which is also consistent with the

observation from Table IV. This may be rooted in the fact that

Maple_CM_ordUIP is developed based on Maple_CM with

a modified learning strategy. For details, please refer to the

Proceedings of SAT Competition 2018 [24].

We decide to eliminate Maple_LCM_Scavel_fix2 from

our candidate solver list, given the quite amount of cases

in which it shows erroneous behavior and the few amount

of win cases it can potentially contribute (e.g. it only beats

others on 287 cases while crashes on 205 cases). In addi-

tion, since Maple_CM and Maple_CM_ordUIP show similar

solving behavior, we only select one of them. We assume

Maple_CM may have slightly more possibility to contribute

to the portfolio approach, since it wins in more cases.

Therefore, we choose Maple_CM over Maple_CM_ordUIP.

234

(a) (b) (c)

(d) (e) (f)

Fig. 5: Solving Behaviors with Scopes (x axis indicates the solving time in seconds; y axis indicates the total scope of all the

signatures in the corresponding Alloy model)

Fig. 6: Similarity in each combination of two candidate solvers

Finally, the SAT solvers, namely MapleLCMDistChronoBT,

Maple_CM and cms55-main-all4fixed are selected as the

component solvers for our portfolio approach, and we label

them as c0, c1 and c2 respectively.

B. RQ2: Solving Behaviors with Scope

This section investigates how the scope affects the per-

formance of the component solvers. Figure 5 presents their

performances on 6 Alloy subjects, in which the x axis indicates

the total scope of all the signatures in the corresponding

Alloy model, the y axis indicates the solving time in seconds.

The red, green and blue dots indicate solver c0, c1 and c2,

respectively. According to Figure 5, we can find that as the

scope increases, the solving time of all component solvers

increases generally. However, there is no obvious patterns

behind the curves to help us predict which solver performs the

best in which kind of Alloy subject. This makes machine learn-

ing highly demanding for classifying the component solvers

according to their suitability for the input Alloy subjects.

C. RQ3: Feature Importance and Selection

The length of the relational bound feature vector we intro-

duced in Section IV-B2 is set to 40. Given this, there are 208

features in all the three levels. Among these, 45 are constant

across all cases. After removing these features, we have 85

features in level 1, 75 features in level 2, and 3 features in

level 3. In order to evaluate how the features in each level

affect the model prediction, we conduct an ablation study of

all the combinations of the feature levels. Table V shows the

prediction accuracy in each machine learning model under

each combination.

We can see that the features from level 2 contribute the

most in the prediction results. In all the machine learning

models except for MLP, even using the level 2 features alone

outperforms the circumstances when using the features from

all the three levels. The level 1 features contribute more than

the level 3 features. Using level 3 features combined with level

1 can make improvements compared with using the level 1

features alone; While using level 3 features combined with

level 2 can downgrade the performance compared with using

the level 2 features alone. Furthermore, using combination of

level 2 and 3 features outperforms using combination of level

1 and 3 features. These two observations indicates that features

in level 1 are not as good as the features in level 2. In addition,

level 2 features can almost cover the information expressed

in level 3 features. This result can also be explained with the

translation in Alloy analyzer, that the optimized and simplified

Kodkod relational formulas are closer to the boolean formulas

the SAT solver directly uses. Additionally, we can extract more

features at level 2 compared with level 3, which means level

235

TABLE V: Model accuracy on different feature combinations

Model
Accuracy(%)

(1) (2) (3) (1, 2) (1, 3) (2, 3) (1, 2, 3)

svm 73.55 80.26 63.02 76.20 74.76 79.45 76.95
decisiontree 70.35 80.53 69.29 75.42 72.81 77.59 75.91

adaboost 73.70 81.68 71.08 73.78 74.27 81.33 75.73
gradientboosting 77.27 81.43 70.04 78.88 74.42 80.37 78.28

bagging 73.76 81.09 72.05 80.46 73.39 81.25 80.50
knn 76.46 80.92 71.02 80.14 76.66 80.89 80.14
lr 75.28 77.76 59.51 75.08 74.70 76.55 76.63

lsvm 72.39 76.52 59.42 73.69 72.33 75.86 74.18
mlp 75.67 77.27 71.89 78.33 77.36 76.13 78.67

TABLE VI: Portfolio Approach Performance (time in seconds)

Portfolio c0 c1 c2 BS RS
solve time 64638.5 176872.0 84627.5 180407.4 40046.5 147225.8

ratio NA 2.74 1.31 2.79 0.62 2.28

2 features can provide more accurate and expressive logical

information.

Given the above discussion, we decide to only select the

features from level 2 for our portfolio approach. The feature

extraction time in level 2 for the whole case suite is 119.15

seconds, which is on average 0.016 seconds for each case.

D. RQ4: Effectiveness of Portfolio Approach

Our portfolio approach applies Adaboost classification algo-

rithm to do the solver selection. The accuracy of the selection

is 82%. We conduct 10-fold cross-validation to evaluate our

portfolio approach. Note that we divide our refined case suite

into 10 groups in unit of Alloy subjects. The solving time

of the portfolio approach is based on the prediction of each

validation set where the Alloy subjects are unseen in the

corresponding training set. For instance, if the prediction on

a sample in validation set is component solver c0, we get the

solving time of c0 as the solving time of our portfolio approach

on this sample. Since there is no overlap among the validation

sets, we can get all the predicted solving time of the case suite.

We repeat the 10-fold cross-validation for 10 times to mitigate

the over-fitting problem.

The baselines of our portfolio approach are the individual

component solvers (c0, c1 and c2), the virtual solver which

randomly selects the component solver (RS), and the virtual

solver which always select the best component solver (BS).

The results of portfolio approach comparing with the baselines

are shown in Table VI in which solve time means the total

solving time of each solver on the refined test suite, and ratio

means the ratio between the baseline time overhead and our

portfolio approach time overhead. We can conclude from the

results that our portfolio approach outperforms each individual

component solver, as well as the random selection approach

significantly. In addition, the speed of our portfolio approach

achieves 62% of best selection approach speed and saves

19989 seconds comparing to the best on average component

solver c1.

E. RQ5: Machine Learning Model Effectiveness

We tried 9 machine learning models and the results are

shown in Table VII, in which mean and std indicate the

average predicted solving time and the standard deviation in

10 repetitions, Acc means the accuracy with the threshold

consideration. According to the results, we can say that all the

machine learning models perform relatively similar and stable

regarding the average solving time as well as the standard

deviation of the prediction. Furthermore, they all outperform

the three individual component solvers as well as the virtual

solver which does the random selection. Besides, these results

can further confirm that our extracted features are not only

informative but also robust.

Note that Decision tree, AdaBoost and SVM all perform

well in terms of the predicted time. The reason we choose

AdaBoost over Decision Tree and SVM is because it achieves

both the accuracy (in terms of the mean predicted time and the

accuracy) and the stability (in terms of the standard deviation)

of prediction.

VII. RELATED WORK

Our portfolio solver helps solve the problem of choosing a

good solver for given Alloy models based on machine learning

approach. Here, we discuss the related works in portfolio

combinatorial solvers using machine learning and Alloy.

A. Portfolio CSP Solvers Using Machine Learning

CPHydra [11] is the first portfolio CSP solver which ap-

plies a machine learning technique called k-nearest neighbor

algorithm (K-NN) to exploit the similarity of problems and

select the component solvers. The extracted features include

both static (syntactic) and dynamic features. The dynamic fea-

tures include modeling choices and search statistics. CPHydra

combines machine learning with the idea of partitioning CPU

time between the component solvers to select the solvers and

maximize the expected number of solved problems within a

settled time limit. SUNNY [29] is a lazy portfolio approach

which uses the K-NN algorithm just as CPHydra, but applies

three heuristics to decide the order of the component solvers

to run and minimize the average solving time of each problem.

236

TABLE VII: Execution time of predicted portfolio and acceleration ratio

Model
Predicted time

Acc(%)
Acceleration ratio

mean std(%) l.t. s.t. a.t. s0 s1 s2

svm 64938.44 0.00 0.80 4.55 0.62 2.27 2.72 1.30 2.78
decisiontree 64477.84 4.03 0.81 4.59 0.62 2.29 2.75 1.31 2.80

adaboost 64638.51 0.10 0.82 4.57 0.62 2.28 2.74 1.31 2.79
gradientboosting 70040.82 0.00 0.81 4.21 0.57 2.10 2.53 1.21 2.58

bagging 69628.43 0.40 0.81 4.24 0.58 2.11 2.54 1.22 2.59
knn 76148.18 0.00 0.81 3.88 0.53 1.94 2.32 1.11 2.37
lr 76748.25 0.00 0.78 3.85 0.52 1.92 2.30 1.10 2.35

lsvm 75977.08 1.50 0.77 3.89 0.53 1.94 2.33 1.11 2.38
mlp 70642.10 1.70 0.77 4.18 0.57 2.09 2.50 1.20 2.55

Variants of SUNNY have been proposed – a sequential port-

folio solver called sunny-cp [30], and a parallel solver called

sunny-cp2 [31]. In addition, Stojadinović et al. [32] propose

a simplified K-NN based portfolio solver which has a short

training phase and achieves better performance.

Some researchers have looked at the problem from other

angles. Loreggia et al. [33] introduce an automated way for

generating features by training a neural network on images

translated from problems. Arbelaez et al. [34], [35] use support

vector machines (SVM) to dynamically adapt the search

heuristics inside a single CSP solver. Stojadinović et al. [36]

and Hurley et al. [37] propose portfolio CSP approaches

for selecting among different SAT encoding, instead of CSP

solvers. An empirical study of the portfolio approaches for

CSPs is presented by Amadini [38], [39].

B. Portfolio SAT and SMT Solvers Using Machine Learning

SATzilla-07 [40] is the first mature SAT portfolio solver

which selects solvers using machine learning models for run-

time prediction. SATzilla [41] performs better than SATzilla-

07 and becomes a successful approach, making the portfolio

construction scalable and completely automated. To achieve

that, it integrates local-search solvers as component solvers

and applies hierarchical machine learning models on different

types of SAT problems. Malitsky et al. [42] investigated

alternative ways of building algorithm portfolios with K-NN

classification to determine which solver to use for a given

problem. In the SMT literature, Abdul Aziz et al. [43] uses a

linear machine learning technique called Ridge regression to

estimate the hardness of SMT problems. A Portfolio bit-vector

SMT solver called Wombit [44] applies a Decision Tree model

to select the candidate solvers.

Note that the potential advantage of using our portfolio

solver instead of the off-the-shelf portfolio SAT solver is that

our solver can make use of the features from relational logic

which makes our approach more specific and targeted for

Alloy models. Since the component SAT solvers we applied

in our portfolio solver are totally different from the ones in

the of-the-shelf portfolio solver, we leave an apple-to-apple

comparison for future work.

C. Alloy

Over the past years, researchers have developed many

extensions for Alloy [45]–[47]. Alloy∗ [48] allows users to

write models in second order logic. AUnit [49] defines unit

testing for Alloy. MuAlloy [50], [51] brings mutation testing

to Alloy. ASketch [52]–[54] is able to sketch partial Alloy

models. AlloyFL [55] helps to locate faults in Alloy models.

VIII. THREAD TO VALIDITY

Threats to internal validity are about whether over-fitting

may have occurred in the experimental evaluation, that is,

whether the generated machine learning model is designed to

fit the training data so closely that it becomes inaccurate for

unseen data. If the over-fitting happens, then our conclusions

about the advantages of the portfolio approach may not remain

valid once the approach is applied more broadly. To mitigate

this, the 10-fold cross validation has been used. Besides, the

techniques for reducing the machine learning model complex-

ity has also been applied to mitigate the over-fitting risk.

The main threat to external validity is that our collected

Alloy models may not generalize to other unseen models. We

use the models from the examples in Alloy Analyzer tool as

our subjects, but these models may not be representative of

other Alloy models. Although the models are from a diversity

of sources and applications, it is still possible that they exhibit

an undesirable lack of variety. In particular, previous research

has shown that machine learning techniques may behave

differently on a totally different problem.

IX. FUTURE WORK & CONCLUSION

Regarding to the above threats, we plan to generate a more

pervasive Alloy model dataset from the real-world systems to

make our portfolio approach more robust and applicable.

This paper proposed a portfolio approach for the Alloy

Analyzer based on machine learning techniques which auto-

matically selects an appropriate SAT solver for a certain Alloy

model. To achieve this, we extract the Alloy specific features

from three levels: Alloy source code level, Kodkod formula

level and the boolean formula level. Experimental results show

that our portfolio approach outperforms each of the component

solvers as well as random solver selection approach.

ACKNOWLEDGMENT

We thank Sasa Misailovic for helpful discussion and the

anonymous reviewers for valuable comments. This research

was partially supported by the US National Science Founda-

tion under Grant No. CCF-1718903.

237

REFERENCES

[1] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for detailed
design,” in Behavioral Specifications of Businesses and Systems, 1999.

[2] D. Marinov and S. Khurshid, “Testera: A novel framework for automated
testing of java programs,” in ASE, 2001.

[3] D. Jackson, “Alloy: A lightweight object modelling notation,” TOSEM,
2002.

[4] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, 2003.
[5] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,

“The margrave tool for firewall analysis,” in LISA, 2010.
[6] N. Ruchansky and D. Proserpio, “A (not) nice way to verify the openflow

switch specification: Formal modelling of the openflow switch using
alloy,” SIGCOMM, 2013.

[7] S. Maoz, J. O. Ringert, and B. Rumpe, “Cd2alloy: Class diagrams
analysis using alloy revisited,” in MODELS, 2011.

[8] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS, 2007.

[9] “Sat competition 2018 homepage,” 2018. [Online]. Available:
http://sat2018.forsyte.tuwien.ac.at/

[10] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, April 1997.

[11] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
“Using case-based reasoning in an algorithm portfolio for constraint
solving,” in Irish Conference on Artificial Intelligence and Cognitive
Science, 2008, pp. 210–216.

[12] K. Wang, A. Sullivan, and S. Khurshid, “Automated model repair for
alloy,” in ASE, 2018.

[13] K. Wang, A. Sullivan, and S. Khurshid, “Arepair: A repair framework
for alloy,” in ICSE, 2019.

[14] “Alloy 4 tutorial materials.” [Online]. Available:
http://alloy.lcs.mit.edu/alloy/tutorials/day-course/

[15] E. Torlak, “Kodkod documentation.” [Online]. Available:
http://emina.github.io/kodkod/doc/

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (Second Edition).
Springer, 2017, vol. 1.

[17] N. S. Altman, “An introduction to kernel and nearest-
neighbor nonparametric regression,” The American Statistician,
vol. 46, no. 3, pp. 175–185, 1992. [Online]. Available:
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879

[18] P. McCullagh and J. Nelder, Generalized Linear Models, Second
Edition, ser. Chapman and Hall/CRC Monographs on Statistics
and Applied Probability Series. Chapman & Hall, 1989. [Online].
Available: http://books.google.com/books?id=h9kFH2_FfBkC

[19] M. A. Hearst, “Support vector machines,” IEEE Intelligent Systems,
vol. 13, no. 4, pp. 18–28, Jul. 1998. [Online]. Available:
http://dx.doi.org/10.1109/5254.708428

[20] J. R. Quinlan, “Induction of decision trees,” Mach. Learn.,
vol. 1, no. 1, pp. 81–106, Mar. 1986. [Online]. Available:
http://dx.doi.org/10.1023/A:1022643204877

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[22] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[23] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[24] M. J. H. Heule, M. J. J’́arvisalo, and M. Suda, “Proceedings of sat
competition 2018: Solver and benchmark descriptions,” ser. Department
of Computer Science Series of Publications B, 2018. [Online].
Available: http://hdl.handle.net/10138/237063

[25] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algo-
rithm runtime prediction: The state of the art,” 2012, coRR,
http://arxiv.org/abs/1211.0906.

[26] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” AI Magazine, vol. 35, no. 3, pp. 48–60, 2014.

[27] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning
for algorithm selection,” ACM Computing Surveys, vol. 41, no. 1, pp.
6:1–6:25, 2009.

[28] L. Kotthoff, I. P. Gent, and I. Miguel, “An evaluation of machine
learning in algorithm selection for search problems,” AI Commun.,

vol. 25, no. 3, pp. 257–270, Aug. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2350296.2350300

[29] R. Amadini, M. Gabbrielli, and J. Mauro, “SUNNY: A lazy portfolio
approach for constraint solving,” Theory and Practice of Logical Pro-
gramming, vol. 14, no. 4–5, pp. 509–524, 2014.

[30] R. Amadini, M. Gabbrielli, and J. Mauro, “SUNNY-CP: A sequential
CP portfolio solver,” pp. 1861–1867, 2015.

[31] R. Amadini, M. Gabbrielli, and J. Mauro, “A multicore tool for con-
straint solving,” pp. 232–238, 2015.

[32] M. Stojadinović, M. Nikolić, and F. Marić, “Short portfolio training for
CSP solving,” 2015, coRR, https://arxiv.org/abs/1505.02070.

[33] A. Loreggia, Y. Malitsky, H. Samulowitz, and V. A. Saraswat, “Deep
learning for algorithm portfolios,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence, 2016, pp. 1280–1286.

[34] A. Arbelaez, Y. Hamadi, and M. Sebag, “Online heuristic selection in
constraint programming,” in Proceedings of the International Symposium
on Combinatorial Search, 2009, https://hal.inria.fr/inria-00392752/.

[35] A. Arbelaez, Y. Hamadi, and M. Sebag, “Continuous search in constraint
programming,” in Autonomous Search, Y. Hamadi et al., Eds., 2011,
ch. 9, pp. 219–243.

[36] M. Stojadinović and F. Marić, “meSAT: Multiple encodings of CSP to
SAT,” Constraints, vol. 19, no. 4, pp. 380–403, 2014.

[37] B. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan, “Proteus: A
hierarchical portfolio of solvers and transformations,” in Integration of
AI and OR Techniques in Constraint Programming: Proceedings of the
11th International Conference (CPAIOR’14), H. Simonis, Ed., vol. 8451,
2014, pp. 301–317.

[38] R. Amadini, M. Gabbrielli, and J. Mauro, “An extensive evaluation of
portfolio approaches for constraint satisfaction problems,” International
Journal of Interactive Multimedia and Artificial Intelligence, vol. 3,
no. 7, pp. 81–86, 2016.

[39] R. Amadini, M. Gabbrielli, and J. Mauro, “An empirical evaluation of
portfolios approaches for solving CSPs,” in Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems: Proceedings of the 10th International Conference, C. Gomes
and M. Sellmann, Eds., 2013, pp. 316–324.

[40] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla-07: The
design and analysis of an algorithm portfolio for sat,” in Principles
and Practice of Constraint Programming – CP 2007, C. Bessière, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 712–727.

[41] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: Portfolio-
based algorithm selection for SAT,” CoRR, vol. abs/1111.2249, 2011.
[Online]. Available: http://arxiv.org/abs/1111.2249

[42] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, “Non-
model-based algorithm portfolios for sat,” in Theory and Applications
of Satisfiability Testing - SAT 2011, K. A. Sakallah and L. Simon, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 369–370.

[43] M. A. Aziz, A. Wassal, and N. Darwish, “A machine learning technique
for hardness estimation of QFBV SMT problems,” in Proceedings
of the 10th International Workshop on Satisfiability Modulo Theories
(SMT’12), ser. EPiC Series in Computing, P. Fontaine and A. Goel,
Eds., vol. 20. EasyChair, 2013, pp. 57–66.

[44] W. Wang, H. Søndergaard, and P. J. Stuckey, “Wombit:
A portfolio bit-vector solver using word-level propagation,”
Journal of Automated Reasoning, Nov 2018. [Online]. Available:
https://doi.org/10.1007/s10817-018-9493-1

[45] A. Sullivan, K. Wang, S. Khurshid, and D. Marinov, “Evaluating state
modeling techniques in Alloy,” in SQAMIA, 2017.

[46] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“Aluminum: principled scenario exploration through minimality,” in
ICSE, 2013.

[47] T. Nelson, N. Danas, D. J. Dougherty, and S. Krishnamurthi, “The
power of "why" and "why not": Enriching scenario exploration with
provenance,” in FSE, 2017.

[48] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*: A general-
purpose higher-order relational constraint solver,” in ICSE, 2015.

[49] A. Sullivan, K. Wang, and S. Khurshid, “AUnit: A Test Automation
Tool for Alloy,” in ICST, 2018.

[50] A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid, “Automated test
generation and mutation testing for Alloy,” in ICST, 2017.

[51] K. Wang, A. Sullivan, and S. Khurshid, “MuAlloy: A Mutation Testing
Framework for Alloy,” in ICSE, 2018.

238

[52] K. Wang, A. Sullivan, M. Koukoutos, D. Marinov, and S. Khurshid,
“Systematic generation of non-equivalent expressions for relational
algebra,” in ABZ, 2018.

[53] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Solver-based
sketching Alloy models using test valuations,” in ABZ, 2018.

[54] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Asketch: A
sketching framework for alloy,” in FSE, 2018.

[55] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Fault localization
for declarative models in Alloy,” in eprint arXiv:1807.08707, 2018.

239

