
A Study of Learning Data Structure Invariants

Using O�-the-shelf Tools

Muhammad Usman, Wenxi Wang, Kaiyuan Wang, Cagdas Yelen, Nima Dini,
and Sarfraz Khurshid

University of Texas at Austin, Austin TX 78712, USA
{muhammadusman,wenxiw,kaiyuanw,cagdas,nima.dini,khurshid}@utexas.edu

Abstract. Data structure invariants play a key role in checking correct-
ness of code, e.g., a model checker can use an invariant, e.g., acyclicity
of a binary tree, that is written in the form of an assertion to search for
program executions that violate it, e.g., erroneously introduce a cycle in
the structure. Traditionally, the properties are written manually by the
users. However, writing them manually can itself be error-prone, which
can lead to false alarms or missed bugs. This paper presents a controlled
experiment on applying a suite of o�-the-shelf machine learning (ML)
tools to learn properties of dynamically allocated data structures that
reside on the program heap. Speci�cally, we use 10 data structure sub-
jects, and systematically create training and test data for 6 ML methods,
which include decision trees, support vector machines, and neural net-
works, for binary classi�cation, e.g., to classify input structures as valid
binary search trees. The study reveals two key �ndings. One, most of the
ML methods studied � with o�-the-shelf parameter settings and without
�ne tuning � achieve at least 90% accuracy on all of the subjects. Two,
high accuracy is achieved even when the size of the training data is sig-
ni�cantly smaller than the size of the test data. We believe future work
can utilize the learnt invariants to automate dynamic and static analy-
ses, thereby enabling advances in machine learning to further enhance
software testing and veri�cation techniques.

Keywords: Data Structure Invariants · machine learning · Korat

1 Introduction

Data structure invariants are properties that the data structures in a program
must satisfy in valid states, e.g., a binary search tree implementation must create
structures that are trees, i.e., contain no cycles, and consist of keys that appear
in the tree in the correct search order. In object-oriented programs such invari-
ants are termed class invariants and are expected to hold in all publicly-visible
states [28,34].

Data structure invariants play a key role in testing and veri�cation. For exam-
ple, when written as assertions they enable a number of assertion-based checking
techniques. To illustrate, in software testing, they serve as test assertions as well

as a basis of automated test generation [4, 27]; in model checking, they serve as
target assertions that a model checker can try to violate, i.e., �nd a program
execution that leads to an assertion violation [20,23,33,47]; in runtime veri�ca-
tion, they provide a basis for error recovery using data structure repair [11, 13];
and in static analysis, they enable deep semantic checking [8, 24,35,40,42,48].

Data structure invariants are often written manually by users who want to
utilize them for automated testing or veri�cation. However, writing complex in-
variants manually itself can be error-prone and errors in invariants can lead to
false alarms or undetected faults. To reduce the burden on the user to write
invariants, researchers have developed several techniques for automatically cre-
ating invariants using various forms of analyses. While a vast majority of the
techniques utilize static or dynamic analysis [10,12,14,26,29,32,35,40,42,43,48],
a few techniques have leveraged machine learning methods to characterize in-
variants [16,30] and serve as a basis for our work.

This paper presents a controlled experiment on applying a suite of o�-the-
shelf machine learning (ML) tools to learn invariants of dynamically allocated
data structures. Speci�cally, we use 6 ML methods that include four methods
based on decision trees [39], as well as support vector machines [9] and multi-
layer perceptrons [36]. As data structure subjects we use structural invariants of
10 data structures that have been studied before in several contexts [4, 13, 16],
including most recently for training binary classi�ers using feed-forward arti�cial
neural networks [16].

The subjects were introduced in the public distribution of the automated
test input generator Korat [1, 4] and were originally developed for the purpose
of evaluating Korat's input generation. Each data structure contains a Java
method called repOk that implements an executable check for the properties
that represent the corresponding structural invariants (and a variety of other
methods). Given a repOk method and a bound on the input size, e.g., 5 nodes for
a binary search tree, Korat performs a backtracking search over the space of all
candidate inputs (up to the size bound) for repOk to systematically enumerate
all inputs for which repOk returns true. For increased e�ciency, Korat only
considers non-isomorphic candidates. During its search, Korat typically inspects
each candidates by running repOk on it to get feedback for pruning the search,
and as a result outputs only the valid inputs, i.e., inputs for which repOk returns
true.

Our study methodology is as follows. For each data structure subject invari-
ant and ML model, we �rst create training and test data, then we train the ML
model using the training data, and �nally we evaluate it using the test data. To
create the training/test data, we use Korat to exhaustively explore the bounded
input space and create every valid input. The set of all valid inputs forms the
positive samples and a subset of invalid inputs inspected by Korat forms the
negative samples. In general, for complex structural properties, the number of
valid structures is much smaller than the number of invalid structures. There-
fore, to avoid training an incorrect model that simply learns to predict false with
high probability, we use balanced sets of samples such that there are the same

number of positive and negative samples. To study how learnable the invariants
are we vary the ratio of training and test data from 75 to 25 respectively, which
is common in the �eld of machine learning, to 10 to 90 respectively, which allow
us to study the setting where the training data is relatively scarce.

The study reveals two key �ndings. One, most of ML methods studied � with
o�-the-shelf parameter settings and without �ne tuning � achieve at least 90%
accuracy on all of the subjects. Two, the accuracy is achieved even when the size
of the training data is signi�cantly smaller than the size of the test data. We �nd
the results quite encouraging and believe machine learning methods hold much
promise in developing new techniques for more e�ective software analysis.

The training and test/evaluation datasets used in our study are publicly
available at: https://github.com/muhammadusman93/Spin2019KoratML.

2 Background: Korat and Learning

This section provides the necessary background on the Korat test input genera-
tor [4] and basic machine learning models that we use in our study.

2.1 Korat

Korat is a framework for automatic test input generation for Java programs. It
takes as input a Java predicate, termed repOk method, and a �nitization on the
input domain, and generates all possible inputs for which the predicate returns
true. Korat repeatedly executes repOk on candidate inputs, monitors the object
�elds accessed by repOk for each input, and uses this information to create next
candidates to consider. Korat implements a backtracking search that prunes
large parts of the input space while preserving the completeness of the search
and correctness of the generated valid test input. Moreover, Korat generates
only non-isomorphic inputs and does not consider any isomorphic candidates
during search, which signi�cantly reduces the number of generated inputs and
time overhead.

To illustrate, Figure 1 shows the BinaryTree class, including the repOk predi-
cate and �nitization finBinaryTree. The binary tree has a root �eld of type Node

and a size �eld that is a primitive integer. The Node class declares a left �eld
and a right �eld, representing the left child and the right child of the node.
The method repOk checks if its input does not have any cycle and has the cor-
rect value for size. repOk returns true if the checked property holds and false

otherwise. The �nitization method finBinaryTree speci�es a bound on the total
number of nodes, and the min and max values for size.

The Korat search internally represents each candidate input structure using
a candidate vector of integer indices whose length depends on the �nitization
and elements that represent object �elds. Each element of the candidate vector
indexes into an appropriate domain of values for the corresponding �eld. To
illustrate, for a �nitization of up to 3 nodes (Node 1, Node 2, and Node 3) and
size equal to 3, Korat creates a candidate vector of length 8: index 0 represents

https://github.com/muhammadusman93/Spin2019KoratML

class BinaryTree {

static class Node {

Node left, right; }

Node root;

int size;

boolean repOk() {

if (root == null) return size == 0;

// checks that tree has no cycle

Set visited = new HashSet();

visited.add(root);

LinkedList workList = new LinkedList();

workList.add(root);

while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();

if (current.left != null) {

if (!visited.add(current.left)) return false;

workList.add(current.left);

}

if (current.right != null) {

if (!visited.add(current.right)) return false;

workList.add(current.right);

}

}

// checks that size is consistent

return (visited.size() == size); }

static IFinitization finBinaryTree(int size) {

return finBinaryTree(size, size, size); }

static IFinitization finBinaryTree(int nodesNum, int minSize,

int maxSize) {

IFinitization f = FinitizationFactory.create(BinaryTree.class);

IObjSet nodes = f.createObjSet(Node.class, nodesNum, true);

f.set("root", nodes);

f.set("size", f.createIntSet(minSize, maxSize));

f.set("Node.left", nodes);

f.set("Node.right", nodes);

return f; }}

Fig. 1: BinaryTree repOk and �nitization

the value of the root �eld; index 1 represents the size (and its value is �xed as
0 since size is allowed to take only one value, i.e., 3); indexes 2 and 3 represent
the left and right children of Node 1 respectively; likewise indexes 4, 5 and
6, 7 represent the left/right children of Node 2 and Node 3 respectively. The
value of each index that represents a node ranges from 0 to 3, representing

4 possibilities: [null, Node 1, Node 2 and Node 3]. This �nitization de�nes a
bounded exploration space of size 4× 1× (4× 4)3 = 16, 384 since the tree root
and each of left and right �elds of each of the 3 nodes have 4 possible values,
and the tree size is �xed to 1 value.

The Korat search generates the following candidate vectors for a binary tree
using this �nitization:
0 0 0 0 0 0 0 0 :: 0 1

1 0 0 0 0 0 0 0 :: 0 2 3 1

1 0 0 1 0 0 0 0 :: 0 2 3

1 0 0 2 0 0 0 0 :: 0 2 3 4 5 1

1 0 0 2 0 1 0 0 :: 0 2 3 4 5

1 0 0 2 0 2 0 0 :: 0 2 3 4 5

1 0 0 2 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***

1 0 0 2 0 3 0 1 :: 0 2 3 4 5 6 7

...................................

1 0 2 3 1 0 0 0 :: 0 2 3 4

1 0 2 3 2 0 0 0 :: 0 2 3 4

1 0 2 3 3 0 0 0 :: 0 2 3 4

Each row shows two entities separated by ::. The �rst entity is the candidate
vector and is shown before ::. The second entity is �eld access ordering and is
shown after ::. Valid structures are marked by ***.

N1

N2N3

right
right

Fig. 2: Invalid Binary Tree

N1

N2

N3

right

right

Fig. 3: Valid Binary Tree

To illustrate, the candidate vector [1 0 0 2 0 2 0 0] represents an invalid
binary tree as shown in Figure 2. The �rst index states that Node 1 is the root
node. The left child of Node 1 is null and the right child of Node 1 is Node 2.
Similarly, the left child of Node 2 is null and the right child of Node 2 is Node
2 itself. Both children of Node 3 are null. Thus, the candidate vector represents
an invalid binary tree because Node 2 has a self-loop (cycle).

Another example candidate vector [1 0 0 2 0 3 0 0] represents a valid binary
tree as shown in Figure 3. This candidate vector shows that Node 1 is the root
node. The left child of Node 1 is null and the right child of Node 1 is Node 2.
Similarly, the left child of Node 2 is null and the right child of Node 2 is Node
3. Both children of node 3 are null. Since the binary tree has no cycle, and it
has size 3 with 3 nodes reachable from the root, the binary tree is valid.

For this �nitization, Korat creates and inspects 63 candidate structures (out
of 16384 total candidates while pruning the rest), and outputs 5 of them as valid
binary trees with 3 nodes. Korat search breaks isomorphisms, which helps to
reduce the number of structures to be explored and generated, thus speeding
up the search � note, none of the structures explored by Korat are isomorphic.
To illustrate Korat's backtracking search, when Korat �nds that the candidate
vector [1 0 0 2 0 2 0 0] makes the repOk returns false and the last accessed �eld
is the right child of Node 2, it simply increases the value of index 5 (from 2
to 3) and point the right child of Node 2 to Node 3. Korat knows that the left
and right children of Node 3 do not a�ect the result of repOk since those �elds
are not read by repOk for the given candidate and thus can be ignored for this
combination of values for �elds accessed. This pruning helps Korat remove a lot
of invalid structures in practice.

2.2 Machine Learning Models

The machine learning models used in the study are Decision Tree (DT) Clas-
si�er [39], ensemble Decision Tree Classi�ers (including Random Forest Tree
Classi�er (RFT) [22], Gradient Boosting Tree Classi�er (GBDT) [18] and Ad-
aboost Decision Tree Classi�er (ADT) [17]), Support Vector Machine (SVM) [9],
and Multi-Layer Perceptron (MLP) [36]. We used Python programming language
and Scikit-Learn library [2] to implement these machine learning models.

2.2.1 Decision Tree Classi�ers DT classi�er takes a tree as a classi�er
where each leaf node represents the label of the class, and each intermediate
node represents a test on a feature. DT is easy to train and can handle qual-
itative features without using dummy encoding. However, DT is not good in
understanding complex relationships between features and is sensitive to the
changes in training data.

2.2.2 Ensemble Decision Tree Classi�ers RFT classi�er is based on the
bootstrap aggregating (Bagging) technique. The underlying idea is to create
multiple decision trees and then combine their results to predict the �nal classi-
�cation labels. This technique reduces variance of the model and also does not
increase bias, and usually overcomes the problem of over-�tting if su�cient num-
ber of decision trees are used. GBDT classi�er uses a di�erentiable loss function
and creates a strong model using many weak models. ADT classi�er makes use
of the results of previous trees to select the next trees so that the focus can
be shifted on samples which are much harder to classify. Here, multiple weak
learners work together to make a strong classi�er. After every iteration, weights
are assigned to the training samples and higher weight samples get more priority
in later trees.

2.2.3 Support Vector Machine SVM is a non-probabilistic binary linear
classi�er and assigns each training sample to one of the two categories. They use

Machine Learning

Model

Input Feature 1

Input Feature 2

· · ·

Input Feature n

Valid Structure

Invalid Structure

Fig. 4: Architecture of the experimental setup

a technique called kernel trick in which the data is mapped to a higher dimen-
sion making it linearly separable. This makes SVM useful in high dimensional
spaces, and �exible with di�erent kernel functions. However, when the number
of features is more than the training samples, it is critical to choose the right
kernel function and regularization parameters.

2.2.4 Multi-Layer Perceptron MLP is a type of arti�cial neural network
consisting of multiple layers. The �rst layer is called the input layer and the
last layer is called the output layer, with at least one hidden layer in between.
The algorithm applies back propagation technique for training, using di�erent
non-linear activation functions like tanh and relu. MLP are fully connected and
each connection has a weight which is updated during the training phase usually
by Stochastic Gradient Descent [41] approach. The main advantage of MLP is
its excellent performance in classi�cation, although more training data is needed
which makes the training phase time-consuming.

2.3 Encoding data structures as inputs to ML models

The Korat candidate vector representation provides an immediate encoding for
input structures as inputs for binary classi�cation using machine learning models
as shown in recent work [16]. Once the �nitization is de�ned, the length of the
candidate vector and the ranges of values each element in the vector are precisely
de�ned. Thus, if the candidate vector has length n, the machine learning model
for binary classi�cation has n input features and one output (in {0, 1}), which
represents whether the input structure is valid (1) or not (0).

Figure 4 illustrates the experimental setup.

3 Study Subjects

As data structure subjects we select 10 subjects from the standard Korat distri-
bution [1, 4]. The subjects include a variety of textbook data structures imple-
mented in Java: singly-linked lists (SLL), sorted lists (SL), binary trees (BT),

binary search trees (BST), red-black trees (RBT), binary heaps (BH), heap ar-
rays (HA), Fibonacci heaps (FH), disjoint sets (DS), and directed acyclic graphs
(DAG).

4 Study Methodology

In this section, we present our study methodology including generation of train-
ing and test data using Korat, selection of �nitization bounds for Korat, selection
of positive and negative samples, and learning with machine learning classi�ers.

4.1 Generation of training and test data

For each data structure invariant, we use Korat to generate the training and
test data for the machine learning models. Inputs that satisfy the invariants are
termed the positive data and inputs that violate the property are termed negative
data. The inputs generated by Korat serve as positive data and the candidates
explored by Korat but found to violate an invariant serve as a pool for selecting
negative data. Given the structural complexity of all our subjects, the number of
valid structures is much smaller than the number of invalid structures. For each
subject, we create balanced [38] pools of positive and negative data. Section 4.2
explains how we select the �nitization bounds in view of the learning quality of
the ML models. Section 4.3 further describes how we select positive and negative
data.

Each data sample consists of a candidate vector whose elements serve as
features, and a binary label that speci�es whether the candidate is valid or
invalid. Since di�erent data structures have di�erent �elds and may have di�erent
�nitizations, the positive and negative data for di�erent subjects may vary in
length. However, for one subject, each data sample has the same length. To
illustrate, for the binary tree subject, for a �nitization that allows 10 nodes, the
candidate vector has length 22 where the �rst two �elds are root and size of the
tree and each of the subsequent two �elds represent left and right child of one of
the 10 nodes. Thus, each data sample has 23 entries, 22 that are features de�ned
by the Korat candidate vector and 1 that de�nes whether the candidate is valid
or invalid.

4.2 Selection of �nitization bounds

The �nitization bound chosen for each structure determines the space of input
candidates that Korat searches and the number of valid structures it creates.
Note that di�erent data structures can have very di�erent numbers of valid
structures for the same size, e.g., the number of binary search trees with n nodes
is much greater than the number of red-black trees for n nodes due to the height-
balance property of red-black trees.

Our main criteria for setting the �nitization bound for Korat was to select
the smallest bound such that there were su�cient amount of training and test

data for the application of machine learning models and at the same time if
manual tuning of parameters is needed, the amount of data does not create an
impractical problem. Speci�cally, we chose the bound of at least 10,000 positive
data, i.e., valid structures, for all but one of our subjects.

As we explain in Section 4.3, we select the same number of negative samples
as positive samples, so we have at least 20,000 samples for each data structure
invariant (except one). To illustrate, we have to set the �nitization bound of
Binary-Tree property to 10 nodes, which generates 16796 positive samples.

For one of our subjects, namely red-black trees, we chose a �nitization bound
of 9 nodes, which gave fewer than 10,000 valid solutions since generation for a
higher bound timed out. Speci�cally, we used the bound of 9,0,9,9, which speci�es
the number of nodes, the minimum size of the tree, the maximum size of tree
and the number of unique integer keys in the tree respectively. For this bound,
there are 6753 positive samples and 2262280 negative samples. The positive
samples consist of all non-isomorphic red-black trees that can be formed with
up to 9 nodes where each node contains a key from a set of 9 unique integer
values. Table 1 shows for each subject, the �nitization bound (as provided to
the �nitization method of the subject using --args command line option), the
size of the state space for the given �nitization, the number of valid structures
found by Korat, the number of invalid structures explored by Korat, and �nally
the total number of structures explored by Korat.

4.3 Selection of positive and negative samples

The positive samples consist of every (non-isomorphic) valid structure generated
by Korat for the chosen �nitization bound. To balance the dataset, we randomly
select the same amount of negative samples as the positive ones from the full
negative dataset that consists of each candidate Korat explored but found to
be invalid. To illustrate, the Disjoint-Set invariant had 41546 positive samples
and 372309 negative samples. We kept all of the 41546 positive samples and
randomly selected 41546 samples from 372309 the negative samples.

Table 1: Candidate structures explored by Korat for each data structure subject.
Subject Finitization State Valid Invalid Total

Bound Space Explored Explored Explored

SLL 0,9,10,10 275 26443 500868 527311

BST 8,0,8,0,7 281 12235 3613742 3625977

BH 7 2109 107416 154372 261788

BT 10 272 16796 798304 815100

SL 0,8,9,9 296 24310 150962 175272

HA 6 223 13139 51394 64533

DS 5 239 41546 372309 413855

RBT 9,0,9,9 2135 6753 2262280 2269033

FH 5 282 52281 112084 164365

DAG 6 2108 19696 185197 204893

4.4 Learning with machine learning classi�ers

A key factor in applications of machine learning models is the ratio of training
and test data. Traditionally, ratios of 80:20 or 75:25 for training:test are com-
monly used. We use 4 di�erent ratios in our study. Speci�cally, we performed
experiments using each of the following training:test ratios � 75:25, 50:50, 25:75,
and 10:90. Thus, on one extreme, we explore the more traditional setting where
75% of data are used for training an 25% are used for evaluation, and on the
other extreme, we explore the unconventional setting of using just 10% data
for training and 90% for evaluation. As is common practice in evaluating ML
models, our training and test data had no overlap. Moreover, due to the use of
Korat, not only is there no intersection in the training and test datasets but also
the two datasets don't contain isomorphic structures.

We ran experiments using base ML models taken o�-the-shelf, and also using
manually tuned models. The tuned models performed only slightly better than
base models but the overhead in �nding tuned hyper-parameters outweighed the
increase in accuracy. Therefore, we report the results of base models only in
Table 2 and Table 3.

We report counts of True Negatives (TN), False Positives (FP), False Neg-
atives (FN) and True Positives (TP) in Table 2 and Table 3. True Negative
is when the ground truth label is 0 and the classi�er correctly predicted label
0. False Positive is when the ground truth label is 0 but the classi�er wrongly
predicted label 1. False Negative is when the ground truth label is 1 but the clas-
si�er wrongly predicted label 0. True Positive is when the ground truth label is 1
and the classi�er correctly predicted label 1. In addition, we use four metrics to
report the results of the classi�cation: Precision, Recall, Accuracy and F1 score.
Precision is calculated as TP

TP+FP . Recall is calculated as TP
TP+FN . Accuracy is

calculated as TP+TN
TP+TN+FP+FN . F1 score is calculated as 2∗Precision∗Recall

Precision+Recall .

5 Experimental Results

Experiments were performed with training data percentage of 10%, 25%, 50%,
and 75%, and in each case the rest of the data was used for testing, i.e., evaluation
of accuracy. In this section, we included detailed results obtained using 10%
training data (Tables 2 and 3) and the remaining detailed results are included in
the GitHub repository and summarized here due to space limitation. We choose
to include 10% here because it is the most interesting case as we train on a
relatively small percentage of data and still are able to classify the data structure
invariants with surprisingly high accuracy. The key results are as follows.

For 10% training data ratio (i.e., 90% test data), the maximum accuracy for
the subject invariants was 99.87%, which was achieved for the binomial heap
invariant using multi-layer perceptrons (MLPs). The minimum accuracy was
75.50% for the heap array invariant using Adaboost trees. Overall, decision trees
(DTs) performed the best on data structure invariants whereas Adaboost trees
(ABTs) performed the worst for the invariants studied. DT average accuracy is

Table 2: Classi�cation results for 10:90 training:test ratio
Property Model TN FP FN TP Accuracy Precision Recall F1

SLL

DT 23728 37 39 23794 0.9984 0.9984 0.9984 0.9984
RFT 23659 106 25 23808 0.9972 0.9956 0.9990 0.9973
GBDT 23729 36 24 23809 0.9987 0.9985 0.9990 0.9987

ABT 22402 1363 396 23437 0.9630 0.9450 0.9834 0.9638
SVM 23196 569 24 23809 0.9875 0.9767 0.9990 0.9877
MLP 23691 74 24 23809 0.9979 0.9969 0.9990 0.9979

BST

DT 10092 921 865 10145 0.9189 0.9168 0.9214 0.9191
RFT 10258 755 580 10430 0.9394 0.9325 0.9473 0.9399
GBDT 10149 864 192 10818 0.9521 0.9260 0.9826 0.9535

ABT 10030 983 324 10686 0.9407 0.9158 0.9706 0.9424
SVM 10325 688 1630 9380 0.8947 0.9317 0.8520 0.8900
MLP 10337 676 380 10630 0.9521 0.9402 0.9655 0.9527

BH

DT 96447 211 155 96536 0.9981 0.9978 0.9984 0.9981
RFT 96258 400 215 96476 0.9968 0.9959 0.9978 0.9968
GBDT 95902 756 382 96309 0.9941 0.9922 0.9960 0.9941
ABT 93536 3122 1958 94733 0.9737 0.9681 0.9797 0.9739
SVM 96391 267 50 96641 0.9984 0.9972 0.9995 0.9984
MLP 96523 135 123 96568 0.9987 0.9986 0.9987 0.9987

BT

DT 14979 180 51 15023 0.9924 0.9882 0.9966 0.9924

RFT 14520 639 607 14467 0.9588 0.9577 0.9597 0.9587
GBDT 14774 385 194 14880 0.9808 0.9748 0.9871 0.9809
ABT 13369 1790 0 15074 0.9408 0.8939 1.0000 0.9440
SVM 10467 4692 4996 10078 0.6796 0.6823 0.6686 0.6754
MLP 14323 836 499 14575 0.9558 0.9458 0.9669 0.9562

SL

DT 21687 154 83 21834 0.9946 0.9930 0.9962 0.9946

RFT 21306 535 216 21701 0.9828 0.9759 0.9901 0.9830
GBDT 21262 579 160 21757 0.9831 0.9741 0.9927 0.9833
ABT 18212 3629 3476 18441 0.8376 0.8356 0.8414 0.8385
SVM 21345 496 12 21905 0.9884 0.9779 0.9995 0.9885
MLP 21537 304 15 21902 0.9927 0.9863 0.9993 0.9928

Table 3: Classi�cation results for 10:90 training:test ratio
Property Model TN FP FN TP Accuracy Precision Recall F1

HA

DT 11735 99 46 11771 0.9939 0.9917 0.9961 0.9939

RFT 11523 311 351 11466 0.9720 0.9736 0.9703 0.9719
GBDT 11218 616 95 11722 0.9699 0.9501 0.9920 0.9706
ABT 8852 2982 2812 9005 0.7550 0.7512 0.7620 0.7566
SVM 9993 1841 536 11281 0.8995 0.8597 0.9546 0.9047
MLP 10439 1395 576 11241 0.9167 0.8896 0.9513 0.9194

DS

DT 33595 3700 3053 34435 0.9097 0.9030 0.9186 0.9107
RFT 33730 3565 2820 34668 0.9146 0.9068 0.9248 0.9157

GBDT 31978 5317 2623 34865 0.8938 0.8677 0.9300 0.8978
ABT 30079 7216 8561 28927 0.7890 0.8003 0.7716 0.7857
SVM 30595 6700 2352 35136 0.8790 0.8399 0.9373 0.8859
MLP 32849 4446 2350 35138 0.9091 0.8877 0.9373 0.9118

RBT

DT 5807 276 107 5966 0.9685 0.9558 0.9824 0.9689
RFT 5865 218 65 6008 0.9767 0.9650 0.9893 0.9770
GBDT 5826 257 17 6056 0.9775 0.9593 0.9972 0.9779

ABT 5836 247 32 6041 0.9770 0.9607 0.9947 0.9774
SVM 5849 234 155 5918 0.9680 0.9620 0.9745 0.9682
MLP 5848 235 84 5989 0.9738 0.9622 0.9862 0.9741

FH

DT 45893 1063 1217 45933 0.9758 0.9774 0.9742 0.9758
RFT 44078 2878 3489 43661 0.9323 0.9382 0.9260 0.9320
GBDT 42326 4630 2913 44237 0.9198 0.9053 0.9382 0.9214
ABT 37152 9804 9024 38126 0.7999 0.7955 0.8086 0.8020
SVM 40973 5983 2187 44963 0.9132 0.8826 0.9536 0.9167
MLP 45885 1071 1100 46050 0.9769 0.9773 0.9767 0.9770

DAG

DT 16162 1579 966 16746 0.9282 0.9138 0.9455 0.9294

RFT 15708 2033 1852 15860 0.8904 0.8864 0.8954 0.8909
GBDT 15000 2741 1638 16074 0.8765 0.8543 0.9075 0.8801
ABT 14560 3181 3266 14446 0.8182 0.8195 0.8156 0.8176
SVM 14296 3445 2013 15699 0.8460 0.8200 0.8863 0.8519
MLP 15677 2064 2010 15702 0.8851 0.8838 0.8865 0.8852

96.79%; random forest (RFT) average accuracy is 95.61%; gradient boosting tree
(GBDT) average accuracy is 95.46%; ABT average accuracy is 87.95%; support
vector machine (SVM) average accuracy for Korat is 90.54%; and MLP average
accuracy is 95.59%.

For 25% training data ratio (i.e., 75% test data), the results observed were as
follows. The maximum accuracy for the subject invariant was 99.99%, which was
achieved for the Singly-linked list invariant using MLP. The minimum accuracy
was 71.60% for the sorted list invariant using SVM. Overall, decision trees per-
formed the best on data structure invariants whereas Adaboost Trees performed
the worst of the models studied. DT average accuracy is 98.33%; RFT average
accuracy is 97.34%; GBDT average accuracy is 95.55%; ABT average accuracy is
88.14%; SVM average accuracy is 92.30%; and MLP average accuracy is 97.87%.

For 50% training data ratio (i.e., 50% test data), the results observed were as
follows. The maximum accuracy for the subject invariant was 99.98%, which was
achieved for the heap array invariant using DT and binomial heap invariant using
MLP. The minimum accuracy was 75.13% for the binary tree invariant using
SVM. Overall, decision trees performed the best on data structure invariants
whereas Adaboost trees performed the worst of the models studied. DT average
accuracy is 98.96%; RFT average accuracy is 98.16%; GBDT average accuracy
is 95.78%; ABT average accuracy is 88.16%; SVM average accuracy is 93.64%;
and MLP average accuracy is 98.92%.

For 75% training data ratio (i.e., 25% test data), results observed as follows.
The maximum accuracy for the subject invariant was 100%, which was achieved
for the heap array invariant using DT and sorted list using MLP . The minimum
accuracy was 78.08% for the binary tree invariant using Adaboost Tree . Overall,
decision trees performed the best on data structure invariants whereas Adaboost
Trees performed the worst of the models studied. DT average accuracy is 99.27%;
RFT average accuracy is 98.58%; GBDT average accuracy is 95.65 %; ABT
average accuracy is 88.28%; SVM average accuracy is 94.45%; and MLP average
accuracy is 99.24%.

Overall, from the study we conclude that decision trees are quite good in
predicting structurally complex properties whereas Adaboost trees have the least
accuracy. We also observe that overall the accuracy ranges from a low of 71.60%
to a high of 100.00%.

All experiments were performed on an Intel i7-4700MQ (2.40 GHz) processor
with 8 GB of RAM.

6 Threats to Validity

In our experiments, we use a �xed size for each subject. The ML classi�ers may
perform worse for smaller sizes of subjects due to less available training data
and better for larger sizes of subjects due to more available training data.

The negative examples generated by Korat makes the irrelevant �elds their
default values because setting those �elds to any value does not change the false
result of repOk. So those examples are canonical compared to the entire negative

example space. As a consequence, our results may not hold for other negative
examples.

As explained in Section 3.2, the training data from Korat was always cor-
rectly labeled. Thus, this data had no noise. However, in practical situations, the
training data does not have this quality. Normally, training data has some sam-
ples which are labeled wrong or have missing values. This situation did not occur
here and this is one of the main reason behind high accuracy values observed
during the course of this study.

Another threat to validity is the undersampling technique used in this study.
We can see that the negative cases had a much larger state space and we have to
do undersampling to make the classes balanced. Also it is impossible to generate
all the negatives in some cases. For example, the structures explored for the Red-
Black Tree invariant were 2269033. We tried to randomly sample the negative
samples but more work should be done in future to �nd a better way of dealing
with imbalanced classes and dealing with large state space.

7 Related Work

A number of research projects introduced the use of machine learning meth-
ods in learning properties of software systems [5, 7, 16, 19, 30, 44]. In the speci�c
context of structural properties of data structures, to our knowledge, Malik [30]
�rst introduced the use of a machine learning method, namely support vector
machines, for characterizing the properties, speci�cally by utilizing graph spec-
tra [6]. Most recently, Molina et al. [16] introduced the �rst use of feed-forward
arti�cial neural networks as binary classi�ers for data structure properties and
showed their trained networks had high accuracy and worked better than an
approach [14] for using dynamic analysis for detecting likely program invariants.

Our study is closest to Molina et al.'s work and extends it in three important
directions. One, we evaluate 6 machine learning models, including decision trees
and support vector machines, that were not studied in their work that only used
neural networks. Two, we use 4 data structure subjects that were not in their
study as well as 6 subjects that were in their study. Three, we study several
di�erent ratios of test/training data whereas their study did not consider any
speci�c test/training ratio, rather the ratio in their study was driven by the
training data generated by the test generation tool Randoop [37]. Moreover, we
have no overlap between test and training data whereas in their study there
was up to >50% overlap for positive cases (e.g., for binary search trees and
red-black trees) and for each subject the test data contained all of the training
data. Overall, the results of our study generally corroborate their �ndings, but
in addition, enhance them along new dimensions.

There is a rich body of work on using dynamic analysis and static analysis
in detecting and generating (likely) program invariants [12, 14, 26, 32, 35, 40, 42,
43, 48]. Daikon [14, 15] is a widely studied tool for generating likely program
invariants. The key idea in Daikon is to use a collection of pre-de�ned property
templates and observe program states at control points of interest to check which

of the properties consistently hold at those points, and then to consider those as
likely invariants. While Daikon is quite e�ective at properties over integers and
arrays, its e�ectiveness is relatively low for structural properties. Deryaft [29]
followed Daikon's spirit to introduce a technique for generating likely structural
invariants and can handle complex data structures. However, a key issue with
the Daikon family of techniques is that they require a collection of property
templates and can only create invariants based on those properties (and boolean
connections among them).

There is a large body of work on program synthesis [3, 21, 31] and sketch-
ing [46] that is applicable to invariant generation in principle. We believe machine
learning methods can also be helpful in improving some of these techniques, e.g.,
by guiding the search in the space of candidate programs [25,45].

8 Conclusion

This paper presented a controlled experiment on applying a suite of o�-the-
shelf machine learning (ML) tools to learn properties of dynamically allocated
data structures that reside on the program heap. Speci�cally, we used 10 data
structure subjects, and systematically created training and test data for 6 ML
methods, which include decision trees, support vector machines, and neural net-
works, for binary classi�cation, e.g., to classify input structures as valid binary
search trees. The study had two key �ndings. One, most of ML methods � with
o�-the-shelf parameter settings and without �ne tuning � achieves at least 90%
accuracy on all of the subjects. Two, the accuracy is achieved even when the size
of the training data is signi�cantly smaller than the size of the test data. We
believe machine learning models o�er a promising approach to characterize data
structure invariants.

Acknowledgments

This research was partially supported by the US National Science Foundation
under Grant Nos. CCF-1704790 and CCF-1718903.

References

1. Korat GitHub repository. https://github.com/korattest/korat.
2. Scikit-Learn Library. https://scikit-learn.org/stable/. Accessed: 2019-04-18.
3. Rastislav Bodik. Program synthesis: Opportunities for the next decade. In 20th

ACM SIGPLAN International Conference on Functional Programming, pages 1�1,
2015.

4. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Auto-
mated Testing Based on Java Predicates. In ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pages 123�133, 2002.

5. Lionel C. Briand, Yvan Labiche, and Xuetao Liu. Using machine learning to sup-
port debugging with tarantula. In 18th IEEE International Symposium on Software
Reliability, pages 137�146, 2007.

https://github.com/korattest/korat
https://scikit-learn.org/stable/

6. Andries E. Brouwer and Willem H. Haemers. Spectra of Graphs. Springer-Verlag
New York, 2012.

7. Yu-Fang Chen, Chih-Duo Hong, Anthony W. Lin, and Philipp Rümmer. Learning
to prove safety over parameterised concurrent systems. In Formal Methods in
Computer Aided Design (FMCAD), pages 76�83, 2017.

8. Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency of
C and verilog programs using bounded model checking. In 40th Design Automation
Conference, (DAC), pages 368�371, 2003.

9. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273�297, Sep 1995.

10. Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: Dynamic
symbolic execution for invariant inference. In 30th International Conference on
Software Engineering, pages 281�290, 2008.

11. Brian Demsky and Martin C. Rinard. Automatic detection and repair of errors
in data structures. In Proceedings of the 2003 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications, (OOPSLA,
pages 78�95, 2003.

12. Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. Inductive invariant
generation via abductive inference. In ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications, pages 443�
456, 2013.

13. Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. Assertion-
based repair of complex data structures. In IEEE/ACM International Conference
on Automated Software Engineering, pages 64�73, 2007.

14. Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. Quickly
detecting relevant program invariants. In International Conference on Software
Engineering, pages 449�458, 2000.

15. Michael D. Ernst, Je� H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic
detection of likely invariants. Sci. Comput. Program., 69(1-3):35�45, December
2007.

16. Facundo Molina, Renzo Degiovanni, Pablo Ponzio, German Regis, Nazareno
Aguirre, Marcelo F. Frias. Training Binary Classi�ers as Data Structure Invariants.
In International Conference on Software Engineering (ICSE), May 2019.

17. Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and System
Sciences, 55(1):119 � 139, 1997.

18. Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-
chine. Ann. Statist., 29(5):1189�1232, 10 2001.

19. Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. Learning invari-
ants using decision trees and implication counterexamples. In 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
499�512, 2016.

20. Patrice Godefroid. Model checking for programming languages using verisoft. In
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 174�186, 1997.

21. Sumit Gulwani. Dimensions in program synthesis. In 12th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming,
pages 13�24, 2010.

22. Tin Kam Ho. Random decision forests. In Third International Conference on
Document Analysis and Recognition (Volume 1) - Volume 1, 1995.

23. Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 1st edition, 2011.

24. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In
International Symposium on Software Testing and Analysis (ISSTA), pages 14�25,
2000.

25. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, pages 215�224, 2010.

26. Maria Jump and Kathryn S. McKinley. Dynamic shape analysis via degree metrics.
In 8th International Symposium on Memory Management, (ISMM), pages 119�128,
2009.

27. B. Korel. Automated software test data generation. IEEE Transactions on Software
Engineering, 16(8):870�879, 1990.

28. Barbara Liskov and John V. Guttag. Program Development in Java - Abstraction,
Speci�cation, and Object-Oriented Design. Addison-Wesley, 2001.

29. M. Malik, A. Pervaiz, E. Uzuncaova, and S. Khurshid. Deryaft: A tool for gener-
ating representation invariants of structurally complex data. In ACM/IEEE 30th
International Conference on Software Engineering, 2008.

30. M. Z. Malik. Dynamic shape analysis of program heap using graph spectra: NIER
track. In 33rd International Conference on Software Engineering (ICSE), pages
952�955, 2011.

31. Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
ACM Trans. Program. Lang. Syst., 2(1):90�121, 1980.

32. K. L. McMillan. Quanti�ed invariant generation using an interpolating saturation
prover. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 413�427, 2008.

33. Edison Mera, Pedro Lopez-García, and Manuel Hermenegildo. Integrating software
testing and run-time checking in an assertion veri�cation framework. In Patricia M.
Hill and David S. Warren, editors, Logic Programming, pages 281�295, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

34. Bertrand Meyer. Class invariants: Concepts, problems, solutions. CoRR,
abs/1608.07637, 2016.

35. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine.
In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 221�231, 2001.

36. Fionn Murtagh. Multilayer perceptrons for classi�cation and regression. Neuro-
computing, 2(5):183 � 197, 1991.

37. Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In 29th International Conference on
Software Engineering, pages 75�84, 2007.

38. Foster Provost. Machine learning from imbalanced data sets 101. In Proceedings
of the AAAI'2000 workshop on imbalanced data sets, volume 68, pages 1�3. AAAI
Press, 2000.

39. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81�106, Mar
1986.

40. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In 17th Annual IEEE Symposium on Logic in Computer Science, 2002.

41. Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. Ann.
Math. Statist., 22(3):400�407, 09 1951.

42. Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. In 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 105�118, 1999.

43. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear loop
invariant generation using gröbner bases. In 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 318�329, 2004.

44. Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning
loop invariants for program veri�cation. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 31, pages 7751�7762. 2018.

45. Shikhar Singh, Mengshi Zhang, and Sarfraz Khurshid. Learning guided enumera-
tive synthesis for superoptimization. Under submission, 2019.

46. Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, 2008.
47. Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park. Model

checking programs. In Fifteenth IEEE International Conference on Automated
Software Engineering, (ASE), pages 3�12, 2000.

48. Karen Zee, Viktor Kuncak, and Martin C. Rinard. Full functional veri�cation of
linked data structures. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 349�361, 2008.

