
Symbolic Execution for Importance Analysis and
Adversarial Generation in Neural Networks

Divya Gopinath∗, Mengshi Zhang†, Kaiyuan Wang†, İsmet Burak Kadron‡, Corina S. Păsăreanu∗, Sarfraz Khurshid†
∗ Carnegie Mellon University and NASA Ames

Email: divgml@gmail.com, corina.pasareanu@west.cmu.edu
† University of Texas at Austin

Email: mengshi0617@gmail.com, wangkaiyuanzz@gmail.com, khurshid@ece.utexas.edu
‡ University of California, Santa Barbara

Email: kadron@cs.ucsb.com

Abstract—Deep Neural Networks (DNN) are increasingly used
in a variety of applications, many of them with serious safety
and security concerns. This paper describes DeepCheck, a new
approach for validating DNNs based on core ideas from pro-
gram analysis, specifically from symbolic execution. DeepCheck
implements novel techniques for lightweight symbolic analysis
of DNNs and applies them to address two challenging problems
in DNN analysis: 1) identification of important input features
and 2) leveraging those features to create adversarial inputs. Ex-
perimental results with an MNIST image classification network
and a sentiment network for textual data show that DeepCheck
promises to be a valuable tool for DNN analysis.

Index Terms—

I. INTRODUCTION

Deep Neural Networks (DNN) are increasingly used in a
variety of applications, many of them with substantial safety
and security concerns [20]. Our focus in this paper is on clas-
sifiers: DNNs that take in complex, high dimensional input,
pass it through multiple layers of transformations, and finally
assign to it a specific output label. Such networks are now
being integrated into the perception modules of autonomous
or semi-autonomous vehicles, at major car companies such as
Tesla, BMW, Ford, and others. It is expected that this trend
will continue and intensify.

Owing to the increasing trend of employing neural networks
in safety critical applications which require high assurance
guarantees, the traditional emphasis on obtaining high accu-
racy for DNNs is being augmented with safety and security
goals [16]. However, validating DNNs is complex and chal-
lenging, due to the nature of the learning techniques that create
these models. For example, it is not well understood why
a DNN, say an image classifier, gives a particular output.
This inability to explain the DNN decisions hinders their
application in safety critical domains, such as autonomy.
Furthermore, evaluating the robustness of a network against
conceptually simple yet effective attacks is a hard technical
problem, due to the huge input space of such networks.

This paper presents an approach for the analysis of deep
neural networks based on symbolic execution [7], [19]. Sym-
bolic execution is a well-known program analysis technique
that has seen many advances in recent years [3], [4], [12],

[18], [27] and applications in various domains, such as se-
curity [6], [8], smartphone apps [1], operating systems [36],
and databases [10]. The technique executes the program on
symbolic inputs and systematically collects symbolic mathe-
matical constraints based on the branching conditions in the
code. These constraints are solved with off-the-shelf solvers
to obtain new inputs that execute feasible program paths.

We note that neural networks that employ piecewise linear
activation functions can be seen as imperative programs, which
makes them amenable to program analysis techniques. A pop-
ular class of neural networks use rectified linear units (ReLUs)
activation functions and max pooling operations (convolutional
neural networks). Such networks can be naturally translated
into a branching structure , whereby a path through the neural
network can conceptually be viewed as a path through the
translated program. This enables the application of symbolic
execution to build path conditions for paths through the net-
work. We apply symbolic execution to select program paths of
interest, e.g., paths taken by specific inputs from the network’s
training dataset.

However, just building the path condition for even one path,
using a straightforward application of concolic (or dynamic
symbolic) execution [3], [4], [12], [27], can take considerable
amount of time, and solving a path condition with just one
symbolic variable can stress modern constraint solvers. We
perform a lightweight analysis (without any constraint solving)
to determine inputs that have the most impact on the classi-
fication decision and perform a directed symbolic execution
approach for generating adversarial inputs for the evaluation
of network robustness with minimal constraint solving.

This paper makes the following contributions:

• Idea. We propose a symbolic execution analysis frame-
work for neural networks which focuses on identifying
important input features and using them to guide the
symbolic execution for adversarial attack generation.

• Approach. We describe the DeepCheck approach, that
is embodied by two techniques: DeepCheckImp, which
applies symbolic execution for identifying important in-
put features that intuitively provide explanations for the

network’s decisions; and DeepCheckattack, which applies
symbolic execution to create adversarial attacks.

• Evaluation. We present an experimental evaluation on
an image classification network using the widely studied
MNIST dataset, and on a sentiment network that operates
on textual data. The results highlight the feasibility of
using symbolic execution to identify important input
features and to create attacks, and also show that the iden-
tified important features enable a more scalable method
for generating adversarial examples. To the best of our
knowledge, this is one of the first approaches to generate
meaningful adversaries for textual analysis applications
in an efficient manner.

• Robustness guarantees. Although the adversarial attacks
generated for the image classification network are simple
and have been studied before [30], we make the surprising
observation that neural networks can be vulnerable to
such attacks even along the paths that follow the same
activation patterns as validly classified inputs. Such at-
tacks went unnoticed with previous testing techniques
[26], [31], [34], which focused on generating tests that
increase the coverage of activated neurons, and hence did
not check for attacks along the same path. Furthermore,
if such attacks are not found, our tool then is able to
provide formal guarantees that the network is behaving
as expected.

II. BACKGROUND:

A. Neural Networks

A neural network defines a function F : IRn → IRm

mapping an input vector of real values X ∈ IRn to an output
vector Y ∈ IRm. For a classification network, the output
typically defines a score (or probability) across m classes,
and the class with the highest score is typically the predicted
class. A feed forward network is organized as a sequence of
layers starting with the input layer. Each intermediate layer
consists of computation units called neurons. Each neuron
consumes a linear combination of the outputs of neurons in
the previous layer, applies a non-linear activation function to
it, and propagates the output to the next layer. The output
vector Y is a linear combination of the outputs of neurons
in the final layer. For instance, in a Rectified Linear Unit
(ReLU) network, each neuron applies the activation function
ReLU(x) = max(0, x). Thus, the output of each neuron is of
the form ReLU(w1 ·v1+ . . .+wp ·vp+b) where v1, . . . vp are
the outputs of the neurons from the previous layer, w1, . . . , wp
are the weight parameters, and b is the bias parameter of the
neuron.1

B. Symbolic Execution

Traditional symbolic execution executes programs on sym-
bolic, instead of concrete inputs and systematically explores

1Most classification networks based on ReLUs typically apply a softmax
function at the output layer to convert the output to a probability distribution.
We express such networks as F :=softmax(G), where G is a pure ReLU
network, and then focus our analysis on the network G.

(a) (b) (c) (d) (e)

Fig. 1: (a) Example image with predicted label 3. (b) Top-5%
important pixels (highlighted in green) identified by DeepCheckImp.
(c) Top-10% important pixels (green) identified by DeepCheckImp.
(d) 1-pixel attack (highlighted in red) identified by DeepCheckattack;
changing the red-pixel to black changes the predicted label to 8. (e) 2-
pixel attack (red) that does include an attackable pixel for 1-pixel
attack.

the program paths (up to a given depth bound). For each path
explored, it builds path conditions, i.e., constraints on program
inputs that execute that path based on the conditional branches
in the code. To illustrate, when a conditional statement, say
“if(c)...” is executed, each of the two conditional branches is
individually explored, and the path condition PC is updated to
PC∧c for the then branch and to PC∧¬c for the else branch.
The feasibility of the path conditions is checked using off-the-
shelf constraint solvers, such as satisfiability modulo theories
(SMT) solvers [2], [9], as branch conditions are encountered
during symbolic execution to detect and avoid infeasible paths
(if possible) and to generate test inputs that execute feasible
paths (as desired). Overall, the program effects are computed
as functions over the symbolic inputs.

III. THE DEEPCHECK APPROACH

This section gives an illustrative overview of our approach
on an image classification network, trained on the MNIST
dataset, which is one of our case-study subjects. Figure 1(a)
shows an example image from the standard MNIST training
data, which has the predicted label of 3 (which is the same
as its true label). Our technique performs the following three
steps:

val := 0 // Initilaization
for j in range(0, nh−1): // Linear layer

val := val + wh−1j,i × s
h−1
j

val := val + bi
if val > 0: // ReLU layer

shi := val
else:

shi := 0

Fig. 2: Nodehi (S
h−1) is an imperative function representing the

branching transformation for neuron i at layer h.

A. Translation (DeepCheckτ)

We translate the trained model into an imperative program.A
typical neural network structure does not have any branching.
However, observe that in the case of rectified linear units
(ReLU), the activation function f(x) = max(0, x) can be
naturally translated into a branching instruction, if (x > 0)
then return x; else return 0;. Thus, a path through a neural

network can be seen as a path through the translated program,
where each executed branch corresponds to the respective
ReLU node being activated or not. For simplicity, we discuss
here only ReLU networks but our approach applies to other
piecewise linear networks.

Consider a network N with input vector X =
〈x0, ..., xn−1〉, output vector Y = 〈y0, ..., ym−1〉 and l layers.
Any layer h has nh ReLU nodes and produces an output
vector, V h = 〈vh0 , ..., vhnh−1〉, which feeds as input to the
subsequent layer. Each neuron consumes a linear combination
of the outputs of neurons in the previous layer, applies a non-
linear activation function to it (in our case max), and propa-
gates the output to the next layer. The goal of DeepCheckτ is
to convert this model into a semantically equivalent program
P , s.t. for any input x, N (x) ≡ P(x).

Let us consider the input state of P to be Sinp, which
is ↔ X , output state as Sop and the outputs of the hidden
layer nodes represented as the intermediate states Sh =
〈sh0 , ..., shnh−1〉. Any ReLU node i at layer h applies a function
hW,b(V

h−1) to produce output vhi . W is the weight matrix and
b is the bias term (wh−1j,i is the weight of the edge connecting
node j of layer h−1 with node i of layer h and bh−1i is the bias
term added for node i at layer h). The imperative code function
corresponding to a ReLU node i at layer h (Nodehi (S

h−1))
is shown in Fig. 2. Invoking this function nh times, produces
the list of states, Sh = 〈sh0 , ..., shnh−1〉 which is equivalent to
the outputs of the intermediate layer h of the neural network,
V h = 〈vh0 , ..., vhnh−1〉. Application of the same process for
every layer until softmax, produces the set of output states
Sop, which is ≡ Y , the output of the network.

B. Important input identification (DeepCheckImp)

This step aims at identifying the input variables that impact
the decision of the network the most. We execute the program
P on an input I and obtain the mathematical characterization
of every output variable in terms of the input variables (784
pixels in the case of MNIST).

The output of any hidden neuron can be expressed in terms
of the input variables. Let us consider the neuron i at the
second hidden layer of a fully connected network. The output
of the neuron before the application of the ReLU function can
be expressed as follows: w1

0,i · (w0
0,0 · x0 + w0

1,0 · x1 + ... +
w0
n−1,0 ·xn−1+b00)+w1

1,i ·(w0
0,1 ·x0+w0

1,1 ·x1+ ...+w0
n−1,1 ·

xn−1+b
0
1)...+w

1
n1−1,i ·(w0

0,n1−1 ·x0+...+w0
n−1,n1−1 ·xn−1+

b0n1−1) + b1i . Therefore by induction each output element, yi,
could be expressed as

yi = Ci,0 · x0 + Ci,1 · x1 + ...+ Ci,n−1 · xn−1 +Bi

where Bi is a constant term, and Ci,j is the coefficient (signed)
of the linear polynomial, that can be calculated in terms of the
weights of the non-zero edges from xj to yi as shown below;

Ci,j =
∑

p∈Paths(i,j)

(
∏

e∈Edgesp

w(e)) (1)

where Paths(i,j) denotes the set of paths from input node xj
to output node yi, Edgesp denotes the set of edges on path
p, and w(e) denotes the weight of edge e.

Note that the coefficient term Ci,j precisely corresponds to
the respective partial derivative of the output variable yi w.r.t
the input variable xj (dyi/dxj). Therefore, we use the value
of the coefficient of the input variable to determine its impact
on the output variable, akin to gradient based approaches that
use the partial derivative to determine the impact of each input
variable. Note that we can employ any of the existing gradient
based approaches to identify the important input variables.
The DeepCheck technique is built on a symbolic execution
framework for attack generation and the coefficients are a by-
product of the application of symbolic execution. Therefore
we use them for importance analysis.

We use the coefficients of the input variables in the expres-
sion corresponding to the predicted label (3 in the example),
to assign importance scores for every input variable. An
input variable x1 is considered more important than another
x2, if the classification decision is impacted more by x1
than x2. DeepCheckImp employs three importance metrics:
abs(absolute value of coeff), co(actual signed value of coeff),
coi(actual value of coeff × input value). The input variables
(pixels) are then sorted in the descending order of their scores
and those which are in the top threshold % of this ordered
list are identified as being important. The rationale being that
a small change to the image with respect to the important
pixels, such as changing the value of just one important pixel
can have a high impact on the classification decision, and may
lead to the discovery of adversarial examples – the new image
differs from the original image by the value of just one pixel
but this makes the network incorrectly assign a different label
to this image.

Figure 1(b) illustrates the top-5%, i.e., 39, important pixels
highlighted in green. Note, how the important pixels trace
the shape of the digit 3 and do not point to areas of the
image irrelevant to the digit being identified as 3 such as
the background or the edges. Figure 1(c) illustrates the top-
10%, i.e., 78, important pixels highlighted in green. These
important pixels form a denser pattern that traces the shape of
the digit 3. This highlights that short-listing pixels based on
their coefficient based importance scores can help explain the
classification decision.

C. Adversarial attack generation (DeepCheckattack)

Our adversarial attack generation algorithm,
DeepCheckattack, aims to create a new input that differs
from the original input at t input variables, and has (1) the
same activation pattern as the original but (2) a different
label. For a given input image I, with t input variables
symbolic, the path condition over program P till output layer
Y , is a conjunction of inequalities (introduced by the ReLU

function) of the form PC =
A∧
j=1

(Bj +
t∑
i=1

Cj,i · Xi γ 0),

where j represents the jth activation function defined by
the computation order, A is the total number of activation

functions. Bj is the bias term of the output value of the jth

hidden neuron; Cj,i and Xi are the ith coefficient of the
jth hidden neuron and the ith symbolic value respectively.
γ ∈ {>,≤} and is determined by the activeness of the jth

hidden neuron. In practice, the number of conjunct clauses
is smaller than A because sometimes all coefficients of the
symbolic values (Cj,i) are 0 in which case the entire conjunct
clause evaluates to true.

The output value of the jth neuron in the output layer
Y is a function of the symbolic variables X of the form

fj(X) = Bj +
t∑
i=1

Cj,i ·Xi. Assume that the network predicts

label l (0 to n-1) for the input I, then DeepCheckattack add

constraints AC =
n∧

j=1,j 6=l′
fj(X) < fl′(X) to require the

network to predict a label l′ where l 6= l′. DeepCheckattack

invokes a constraint solver with constraints PC ∧ AC to
solve for concrete values for all Xi. If a solution is found,
DeepCheckattack succeeds in an adversarial attack by setting
X with the concrete values the solver returns and the network
predicts label l′ which is different from the original predicted
label l with the same neuron activation pattern. If no solution
is found, this is a proof of the robustness of the network to ad-
versarial perturbations involving t input features or variables.

Figure 1(d) shows a 1-pixel attack identified by our ap-
proach for image I; changing the red pixel to black changes
the predicted label of the image to 8. This attackable pixel
actually lies in the top-5% (top 39) important pixels for I
identified by DeepCheckImp. The rank order of this attackable
pixel in descending order of importance is 21. Hence, focusing
the 1-pixel attack on important pixels can allow finding an at-
tack much quicker than checking every pixel for attackability.
In fact, this image only has one 1-pixel attack. A linear search
that starts at the first image pixel (top-left corner) and scans
left-to-right takes 346 attempts to find this attack pixel, which
is over 16X the attackable pixel’s rank-order (21). We believe
important pixels can provide a practical heuristic for a more
scalable approach to create attacks.

To create 2-pixel attacks, we focus DeepCheckattack on the
important pixels identified by DeepCheckImp, specifically on
the top-5% important pixels. We make

(
39
2

)
= 741 unordered

pairs of the selected important pixels, and for each pair, we
make the two corresponding variables symbolic, so each path
condition created by symbolic execution contains exactly two
symbolic variables. Applying DeepCheckattack to the 741
pairs results in 93 unique potential 2-pixel attacks. 38 of
the 2-pixel attack pairs contain as an element the pixel that
was earlier identified for the 1-pixel attack, whereas 55 of
the pairs contain only pixels that are not 1-pixel attackable;
Figure 1(e) shows one such pair in red. The important pixels
identified by DeepCheckImp play a key role in focusing
DeepCheckattack to find a 2-pixel attack. The first attack found
by DeepCheckattack for this example, includes the 2 of the 3
top-most important pixels. Thus, the search for a 2-pixel attack
for this example requires checking no more than just

(
3
2

)
= 3

pairs. These results illustrate the potential of using symbolic

execution in identifying important pixels and creating 1-pixel
and 2-pixel attacks, as well as the value of important pixels
in finding attackable pixels and pixel-pairs.

IV. EVALUATION

In this section we present two case-studies of applying
DeepCheck on two networks; an image classification network
for the MNIST dataset and on a sentiment network for textual
data. DeepCheck has been implemented in Java (using the Z3
solver) and also has a Python version (using pulp) to facilitate
easy interface with TensorFlow.

The image network is a fully connected network with the
following configuration, 784×10×10×10×10. It was trained
on 60,000 images of the MNIST dataset [22], and has an
accuracy of 92%. The textual network consists of one convo-
lutional layer (3×30, 64 filters) and one dense layer (1792×1),
where the first layer uses ReLU activation and last layer uses
a sigmoid activation. This network was trained on the IMDB
movie reviews dataset with size 50000. Half of the dataset is
used for training and the other half for testing. For the training,
only top 10000 words are kept and each text is padded or
pruned to 30 words long (for any input longer than 30 words,
we use the last 30 words). We used embeddings with size 30
trained with word2vec algorithm, and it has an accuracy of
76%. Although the accuracy of the networks is below state-
of-the-art, the simplicity of the networks make them amenable
to analysis with our implementation.

We seek to address the following research questions as part
of our evaluation.

1) RQ1: Are the input features identified by DeepCheckImp

useful in explaining the classification decision?
2) RQ2: How effective is the attack generation technique,

DeepCheckattack, in generating adversarial inputs?
3) RQ3: Are the important input features identified by

DeepCheckImp sensitive to adversarial perturbations and
do they help in faster generation of attacks?

4) RQ4: How do the importance metrics (abs, co, coi)
compare in terms of accurately identifying input features
that impact the network decision?

5) RQ5: How does DeepCheck compare with another ad-
versarial attack generation approach?

A. Image Classification Network

We first present the results of applying our technique on
the MNIST network for important pixel identification and
adversarial attack generation.

1) Important pixel identification: We used 10 images from
the data set (covering all ten labels). For each image, we
applied DeepCheckImp to compute a ranked list of pixels
according to their relative importance based on the three
metrics: abs, co, coi. Table I shows the results produced by
DeepCheckImp for the three metrics for top-5%, top-10% and
top-30% of important pixels. For each image (digit), the pixel
values in the original image are shown in white and black,
while the green color highlights the pixels that are identified
important.

digit 5%(39) 10%(78) 30%(235)
abs co coi abs co coi abs co coi

0

1

2

3

4

5

6

7

8

9

TABLE I: Top-5%, top-10% and top-30% of important pixels (green) identified by DeepCheckImp for abs, co, and coi.

digit

1-pixel attack 2-pixel attack
ap # ap # ap-new

ordered shortlist-5% shortlist-10% shortlist-30% shortlist-5%
baseline abs co coi abs co coi abs co coi coi

0 25 3 7 16 7 11 17 20 16 17 548 60
1 4 0 1 3 1 2 4 3 4 4 198 87
2 1 0 0 1 0 1 1 1 1 1 48 10
3 1 0 0 1 0 0 1 0 1 1 93 55
4 6 4 3 4 4 3 4 6 4 4 260 114
5 36 1 2 11 3 2 18 14 11 19 463 100
6 1 1 1 1 1 1 1 1 1 1 287 186
7 47 8 7 18 14 11 22 22 18 22 651 75
8 2 0 0 2 0 0 2 2 2 2 111 36
9 3 0 0 2 0 0 2 2 2 2 171 96

TABLE II: # Attackable pixels detected by the different versions of DeepCheckattack (baseline,ordered,shortlist5%,shortlist10%,shortlist30%
for 1-pixel attacks, shortlist5% for 2-pixel attacks.)

For the top-5% and top-10% images, it can be observed that
each metric marks pixels in the central part of the image as
the most important, while the top-30% images seem to spread
out towards the edges. The central part of an MNIST image

houses the digit. This highlights that the importance metric
does correctly point to the part of the image that aids the
network to make the classification decision, with the precision
decreasing as the threshold % increases. Further, the abs and

digit
1-pixel attack 2-pixel attack

baseline ordered shortlist-5%
abs co coi coi

0 244 7 5 1 2
1 489 60 23 6 2
2 516 119 66 19 19
3 346 254 169 21 3
4 71 3 1 1 2
5 103 6 1 1 2
6 486 2 2 2 2
7 156 4 2 1 2
8 211 142 86 19 4
9 240 169 98 13 2

TABLE III: Number of pixels (out of 784) that had to be tried by the different versions of DeepCheckattack before discovery of the first
attack.

ID Target input Lorig LNW LenImp LenRand

1 “one on his plate he almost seemed to know this wasn’t going to work out and
his performance was quite <UNK> so all you madison fans give this a miss"

NEG POS 4 26

2 “some might even say bizarre this is worth the time br br unfortunately it’s very
difficult to find in video stores you may have to buy it off the internet"

POS POS 13 27

3 “any era that lets its guard down and is overwhelmed by <UNK> it’s a fascinating
film even a charming one in its macabre way but its message is no joke"

POS POS 9 21

4 “can hardly see what is being filmed as an audience we are <UNK> involved
with the actions on the screen so then why the hell can’t we have night vision"

NEG NEG 6 24

5 “shut about details but please try this game it’ll be worth it br br story 9 9 action
10 1 it’s that good <UNK> 10 attention <UNK> 10 average 10"

POS POS 17 9

6 “should at least be put back on the channel this movie doesn’t deserve a cheap
<UNK> it deserves the real thing i’m them now this movie will be on dvd"

POS NEG 5 3

7 “words in each sentence and delivers them in an almost irritating manner its not
funny ever but its meant to be bing and joan have done much better than this"

NEG NEG 2 5

8 “in this genre few of them come up to alexander <UNK> original thief of
<UNK> almost any other <UNK> nights film is superior to this one though it’s
a loser"

NEG POS 5 2

9 “good film i highly recommend watching this in <UNK> with the first and then
<UNK> for how good the series could have been had it continued under burton
and keaton"

POS POS 3 14

10 “providing plenty of laughs and chuckles along the way as well as a good deal
of suspense br br for <UNK> of black comedy this one is guaranteed to please"

POS POS 7 5

11 “<UNK> series now they are <UNK> 1 and i don’t even think i will watch it
oh who am i kidding i probably will and probably will be disappointed again"

NEG NEG 3 22

TABLE IV: Attacks generated using DeepCheckattackon the sentiment analysis network over a set of input sentences. Note that <UNK> is
a placeholder word for rare words, which do not have a corresponding embedding vector in the vocabulary. Lorig and LNW are the label
of the input in the dataset and label that the trained network assigns. LenImp and LenRand represent the number of words changed from
original sentence for a valid attack using importance selection and random selection respectively.

co metrics show similar patterns in the central region, while the
coi metric most closely follows the digit’s shape. Specifically,
the coi metric for top-10% pixels forms a dense pattern tracing
the shape of the digit.

2) Adversarial generation: We evaluate the following ver-
sions of DeepCheckattack.

• Baseline: An exhaustive search of the image is per-
formed, one pixel at a time, starting from the top-left
(0) to bottom-right (783). We apply DeepCheckattack to

check each pixel for attackability. An attackable pixel
(ap) can be given a different value to change the image’s
predicted label while preserving activation patterns of all
the neurons in the path. All possible attackable pixels (1-
pixel adversarial attacks) are identified for every image.

• Ordered: The pixels are ordered based on the im-
portance scores assigned by DeepCheckImp. We apply
DeepCheckattack one pixel at a time on this ordered
list and identify all attackable pixels (1-pixel adversarial

(a)

(b)

Fig. 3: Attackable pixels for 1-pixel (a) and 2-pixel attacks (b)
highlighted in red.

attacks).
• Short-list-threshold%: We apply DeepCheckattack on a

shorter version of the ordered list: for instance, short-
list-5% applies DeepCheckattack on the top 5% of the
pixels ordered based on the importance scores assigned
by DeepCheckImp. We used this technique to find all
1-pixel attacks and 2-pixel attacks within the short list.
a) 1-pixel attacks: We applied the baseline, ordered,

and short-list-threshold% (thresholds 5, 10, 30) versions of
DeepCheckattack to identify 1-pixel attacks in the 10 images.
Figure 3(a) highlights, for each digit, each attackable pixel
(in red) for a 1-pixel attack. The attackable pixels lie on or
are very close to the shape of the corresponding digit. Some
images, e.g., digit 2, contain one attackable pixel out of 784
pixels, whereas some others contain multiple, e.g., 47 for
digit 7. All images except digit 6 when attacked get a unique
incorrect label. Digit 6 has 2 attacks leading to incorrect labels
5 and 8 respectively, both using the same pixel.

Table II shows the number of attackable pixels discovered
by all the techniques. The baseline and ordered versions of
DeepCheckattack detect all possible attackable pixels (# ap)
for 1-pixel attacks. However, use of the ordered list helps
discover attacks faster. Table III shows the number of pixels
that needed to be tried before discovering the first attack. For
all metrics and all images, no more than top one-third of the
important pixels need to be checked by the ordered version,
to find an attackable pixel. Moreover, for all metrics, less than
10 pixels needed to be checked to discover an attackable pixel
for at least half of the images. The coi metric requires the least
number of attempts (a maximum of 21 pixels to be checked
across all the images), and for 4 images, the top most important
pixel identified by coi is an attackable pixel. This highlights
that ordering pixels based on their importance scores definitely
helps reduce the time to find attacks.

In the short-list-threshold% versions of DeepCheckattack,

Fig. 4: Adversary generated using FGSM technique.

we consider only the top 39 (5%), 78 (10%), and 235 (30%)
pixels respectively for the generation of attacks. Table II shows
that for half of the images, use of the top 10% pixels suffices
to cover all possible 1-pixel attacks. Even for the remaining
images, short-list-10% discovers half of the total number of
attacks. Digits 7 and 5 have are the most vulnerable to 1-
pixel attacks. We find that DeepCheckImp helps in catching
subtle adversarial attacks: i.e. on images that the network is
mostly robust to adversaries (such as digits 3 and 6 with just
1 attackable pixel), the importance score helps identify the
pixels that are sensitive to adversarial perturbations.

b) 2-pixel attacks: It is not scalable to apply the baseline
or ordered versions of DeepCheckattack to check for all possi-
ble 2-pixel attacks. Therefore, we applied short-list-5% using
a list ordered by the coi metric. For each image, we selected
all
(
39
2

)
= 741 unordered pairs that can be formed using the

short-listed pixels. We then evaluated each pair to determine
if they generated an attack. For each digit, Figure 3(b) shows
the union of all pixels in any 2-pixel attack and displays
their location. These pixels lie on or are very close to the
shape of the corresponding digit. Table II shows the number
of attackable pixels (# ap) comprising 2-pixel attacks identified
by DeepCheckattack, and of those attacks the number that does
not include any attackable pixel for a 1-pixel attack (# ap-new).
As expected, many 2-pixel attacks consist of a pixel that was
1-pixel attackable. However, several new attack pairs that do
not include any pixel that is attackable for 1-pixel attack are
found. 4 out of 10 digits can be attacked to create multiple
incorrect labels, e.g., digit 8 can be attacked using 3 different
2-pixel attacks to make the network incorrectly classify it as
1, 2, or 3.

Table III presents the number of important pixels to explore
to find the first 2-pixel attack for each image (digit). The worst
case is for digit 2, where top-19 important pixels must be
considered to find a 2-pixel attack. The best case happens for
7 out of 10 digits, where the top-2 important pixels allow
DeepCheckattackto create a 2-pixel attack.

B. Sentiment Analysis Network

The inputs to the sentiment analysis network are sequences
of words rather than images. Each word is represented by a
vector called word embedding that tries to capture the semantic
relation between words. The words used in similar contexts
in this vector space have similar embeddings and that can
help with learning natural language processing (NLP) tasks
[21]. This brings a challenge where identifying importance or
getting attacks on single values does not mean much as the
words are represented as vectors, therefore we need to identify
the important vectors and get attacks on vectors.

To overcome this challenge we had to modify the im-
portance calculation. We calculated the importance score for
each element on the vector similar to the importance score
calculation for pixels (Section III). However, we then sum
these scores over the word embedding vector to get the
importance score for a word. We then rank the words based
on their importance scores, make all the elements of the
embedding vectors for the top-k words symbolic, and apply
the DeepCheckattack algorithm to find a feasible attack.

We use the Python version of DeepCheckattack, imple-
mented using the Python LP solver library called puLP, for
scalability. The solution returned by the solver is a set of values
assigned to each of the elements made symbolic. However
these values may not represent valid embeddings for words.
Therefore, we find the nearest valid word embedding (from
a vocabulary of word embeddings) for each vector in our
solution (using the L2 distance metric). We then replace the
words corresponding to those vectors in the original sentence
with the corresponding nearest words and test that this new
sentence indeed represents a valid attack on the network by
changing the sentiment.

We compare attack generation based on importance se-
lection to attack generation based on random selection over
example inputs to see whether selecting words based on
importance helps us generate shorter attacks. Shorter attacks
are preferable since they involve replacing fewer number of
words in the original sentence such that some meaning of the
original sentence is retained. Therefore, the sentence used for
attack has semantical similarity to the original sentence and
therefore should ideally be assigned the same sentiment by the
network. Let us consider sentence 7 (Table IV), with a negative
sentiment as an example. The importance analysis determined
‘irritating’ and ‘this’ to be the first two most important words.
We made the embedding vectors for these two words symbolic
and were able to obtain a solution that the network marks
with a positive sentiment. The closest valid embeddings to this
solution were the words ‘stupid’ and ‘mode’ for ‘irritating’ and
‘this’ respectively. We generated a new sentence replacing the
two words, which still represented a negative sentiment, but
was classified as being a positive sentiment by the network. If
we select the words to be replaced randomly instead, we can
find an attack by replacing 5 words on an average.

Let us consider another example, for sentence 9 (Table IV),
we are able to obtain an attack by replacing the 3 most impor-
tant words ‘good’ with ‘breakdown’, ‘film’ with ‘confronts’
and ‘highly’ with ‘terrific’. The attack makes the first part
of the sentence a bit nonsensical with ‘breakdown confronts’
but the positive sentiment is still in the text but the network
classifies this sentence as negative instead. In comparison,
without importance selection we are able to obtain an attack
by changing 14 words, nearly half of the whole input text.
This experiment highlights the fact that importance analysis
can help us generate more focused attacks with less changes
compared to random selection.

Note that we used only solutions that lead to attacks on
the network after replacement of the sentence with the valid

words closest to the respective solutions. For both approaches,
there were cases where the solutions when replaced with
the corresponding nearest valid words did not change the
sentiment. We attribute this behavior to sparseness of words in
this vector space which may affect the distance of the nearest
word, and changes in activation patterns when the solution
gets replaced by these word. The results of our experiments
are displayed in Table IV.

C. Discussion:

In this section, we address the research questions based on
our experimental results.

1) RQ1: For the image classification network, based on our
observations (Table I) we can infer that DeepCheckImp

is able to identify input pixels that define the shape
of the input digit. The identified pixels can thus be
considered responsible for the classification decision. We
observe based on the results from the textual model, that
DeepCheckImp helps identify important input features
such as words, which impact the decision of the network
the most.

2) RQ2: The results in Table II show that we were able to
generate 126 1-pixel attacks and discovered 819 attack-
able pixels for 2-pixel attacks for the image classification
network. We were also able to successfully generate
attacks on the textual model (Table IV) which is more
complex than merely modifying pixels in an image. Thus
we were able to use DeepCheckattack to generate attacks
on networks of significant size and on a real datasets.

3) RQ3: The important pixels identified by DeepCheckImp

do correspond to those that are sensitive to adversarial
perturbations, as can be observed in Table II. Exploring
just top 10% of the important pixels helps generate all
possible 1-pixel attacks. Use of DeepCheckImp makes
it feasible to generate 2-pixel attacks which would oth-
erwise require considering

(
784
2

)
= 306946 potentially

attackable pairs. The experiment on the textual model
highlights that choosing the important words identified
by DeepCheckImp increases the chances to discovering
semantically meaningful attacks more efficiently than a
random selection of words. Overall, it can be inferred that
the use of DeepCheckImp makes the attack generation
process scalable and helps identify subtle adversaries.

4) RQ4: The importance metric coi seems to perform the
best in terms of identifying pixels that impact the classi-
fication decision and are also vulnerable to attacks. For
the MNIST images, this seems a little obvious since
the background is always black (pixels have value zero).
However, even on the textual model we observed that the
coi metric consistently identified attackable words better
than co and abs.

5) RQ5: The Fast Gradient Sign Method (FGSM) [13] is
an existing popular approach to generate adversaries for
MNIST images. In this technique, potential adversaries
are generated by modifying the intensity of multiple
pixels simultaneously such that the model’s loss function

reduces. We used this method to generate an adversary
(Figure 4) for the image of digit 3 in Figure 1(a)). We
observed that in order to generate this adversary using
FGSM, the value of almost every pixel on the shape
of digit 3 had to be perturbed. On the other hand, we
were able to generate attacks on the same image which
involved the modification of just 1 pixel using DeepCheck
(Figure 1(d)). Further, we also observed that the activation
patterns or the path traced by the adversary generated us-
ing FGSM, differed a lot for the original validly labelled
input. However, by construction the attack generated by
DeepCheck preserves the activation patterns. The benefit
of using semantic information from the model helps gen-
erate adversaries that the network views similarly as the
original image but gives a different classification. Such
an adversary could be useful in debugging the network
and repairing the network. For example, a possible way
to defend against such attacks would be a more focussed
adversarial training; re-training the network with more
inputs that follow the same path through the network.

V. RELATED WORK

Recent independent work, developed concurrently with
ours, proposes concolic testing for deep neural networks [31].
However their focus is on defining and achieving test cov-
erage requirements, although their approach also produces
adversarial images. In contrast we use symbolic execution for
identifying important pixels and for specific 1-pixel and 2-
pixel attacks, which target the same activation pattern as the
original image; furthermore we use important pixels to focus
the search for attackable pixels.

Other related recent techniques include formal meth-
ods [16], [17] and testing [26], [34] for deep neural networks.
However none of previous work uses formal methods for
important pixel identification, or more generally for explain-
ability in neural networks. Furthermore, they do not check for
attacks along the same activation patterns.

In our work, we used Z3 as the off-the-shelf constraint
solver, which we inherited from a software analysis tool [25].
We note that other constraint solvers can be plugged in
our analysis. For example, a good option is Reluplex [16],
[17], which has been optimized specifically for the analysis
of neural networks with ReLU activations. However, our
methodology is general and can be in principle applied to
other networks with linear units, such as Convolutional Neural
Networks, which can not be handled by Reluplex. Another
option is to use linear programming as in [31], since for a
fixed activation pattern, the problem to be solved becomes
linear. However linear solvers may behave unexpectedly when
no solution exists, and can give unsound results due to
overflow [35].

To our knowledge, existing approaches for testing, formal
verification and attribution have not been applied to textual
models. The rest of this section describes existing techniques
related to attribution or explainability in neural networks and
also existing techniques for adversarial example generation.

A. Techniques for Attribution

Despite the wide-spread adoption of neural networks, most
deep neural network classifiers are black-boxes. It is crucial
to understand the reasons behind the predictions of these
classifiers in order to build trust in the model. Therefore, a
number of techniques have been explored in the area of gen-
erating explanations for predictions. Attribution is a specific
class of approaches, mostly applicable to image classification
applications, where the technique attempts to assign "rele-
vance", "contribution" to each input feature or pixel towards
the classification decision. We describe below broad categories
of attribution approaches.

Perturbation-based approaches alter the value of every input
feature individually by a specific amount [37], re-run the
network on the input and then measure the difference in the
output value. However, these techniques tend to be slow and
the computation time increases with the number of features.
Gradient-based approaches [28]) compute the attributions of
every feature in a single forward and backward pass of the
network on a given input. They compute the signed partial
derivative of the output w.r.t each input variable and multiple it
by the input value to determine the impact of that variable on
the output. Integrated-gradients [32]) proposed an approach
that take an average of the attributions calculate along a
linear path from a baseline (user-defined) until the given input.
Saliency maps [29] consider the absolute value of the partial
derivatives of the output w.r.t each input variable in order to
identify pixels that can perturbed the least to observe a sizable
change in the output value.

B. Techniques for adversarial attack generation

It has been observed that state-of-the-art networks are highly
vulnerable to adversarial perturbations: given a correctly-
classified input x, it is possible to find a new input x′ that is
very similar to x but is assigned a different label [33]. Good-
fellow et al. [14] introduced the Fast Gradient Sign Method
for crafting adversarial perturbations using the derivative of the
model’s loss function with respect to the input feature vector.
They show that NNs trained for the MNIST and CIFAR-10
classification tasks can be fooled with a high success rate.
An extension of this approach applies the technique in an
iterative manner [11]. Jacobian-based Saliency Map Attack
(JSMA) [24] proposed a method for targeted misclassification
by exploiting the forward derivative of a NN to find an
adversarial perturbation that will force the model to misclas-
sify into a specific target class. Carlini et. al. [5] recently
proposed an approach that could not be resisted by state-
of-the-art networks such as those using defensive distillation.
Their optimization algorithm uses better loss functions and
parameters (empirically determined) and uses three different
distance metrics.

The DeepFool [23] technique simplifies the domain by
considering the network to be completely linear. They compute
adversarial inputs on the tangent plane (orthogonal projection)
of a point on the classifier function. They then introduce
non-linearity to the model, and repeat this process until a

true adversarial example is found. Deep Learning Verification
(DLV) [16] is an approach that defines a region of safety
around a known input and applies SMT solving for checking
robustness. They consider the input space to be discretized
and alter the input using manipulations until it is at a minimal
distance from the original, to generate possibly-adversarial
inputs. DeepSafe [15] is an approach that first applies a label-
guided clustering algorithm on inputs with known labels to
identify input regions that can be expected to be consistently
labeled. It then employs the Reluplex solver [17] to verify
that the all possible inputs within a given region are assigned
the same label by the network. DeepRoad [38] introduces an
unsupervised learning technique based on DNNs themselves
for validating DNN-based autonomous drivers.

VI. CONCLUSION

We described a symbolic execution approach for the anal-
ysis of neural networks. Two analyses were presented: 1) to
identify important inputs that can explain the classification
decisions made by a neural network; and 2) to create attacks
by constraint solving, guided by important inputs. The two
analyses apply in synergy and provide a more scalable ap-
proach to finding attacks. An experimental evaluation using
a MNIST model and a textual model demonstrates that the
usefulness of the approach. For the future, we plan to evaluate
our technique on larger networks that have higher accuracy;
we are working on optimizing our tools to achieve this goal.

ACKNOWLEDGMENTS

This work was partially supported by National Science
Foundation NSF grant nos. CCF-1704790 and CCF-1718903.

REFERENCES

[1] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in SIGSOFT FSE. ACM, 2012, p. 59.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in CAV, Jul. 2011.

[3] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI, 2008.

[4] C. Cadar and D. R. Engler, “Execution generated test cases: How to
make systems code crash itself,” in SPIN, 2005.

[5] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE S&P, 2017.

[6] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on binary code,” in IEEE S&P, 2012, pp. 380–394.

[7] L. A. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE TSE, vol. 2, no. 3, 1976.

[8] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in USENIX Security, 2013.

[9] L. de Moura and N. Bjorner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[10] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” in ISSTA, 2007.

[11] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Adversarial
machine learning at scale,” 2016, technical Report. http://arxiv.org/abs/
1611.01236.

[12] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in PLDI, 2005.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[14] ——, “Explaining and harnessing adversarial examples,” 2014, technical
Report. http://arxiv.org/abs/1412.6572.

[15] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “DeepSafe:
A data-driven approach for checking adversarial robustness in neural
networks,” 2017, https://arxiv.org/abs/1710.00486.

[16] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in CAV, 2017.

[17] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex:
An efficient SMT solver for verifying deep neural networks,” in CAV,
2017.

[18] S. Khurshid, C. Pasareanu, and W. Visser, “Generalized symbolic
execution for model checking and testing,” in TACAS, 2003.

[19] J. C. King, “Symbolic execution and program testing,” CACM, vol. 19,
no. 7, 1976.

[20] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, 2015.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[22] “The MNIST database of handwritten digits Home Page,” http://yann.
lecun.com/exdb/mnist/.

[23] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in CVPR, 2016.

[24] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
EuroS&P, 2016.

[25] C. S. Pasareanu, W. Visser, D. H. Bushnell, J. Geldenhuys, P. C.
Mehlitz, and N. Rungta, “Symbolic pathfinder: integrating symbolic
execution with model checking for java bytecode analysis,” Autom.
Softw. Eng., vol. 20, no. 3, pp. 391–425, 2013. [Online]. Available:
https://doi.org/10.1007/s10515-013-0122-2

[26] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in SOSP, 2017.

[27] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in ESEC/SIGSOFT FSE, 2005.

[28] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just
a black box: Learning important features through propagating activation
differences,” CoRR, 2016.

[29] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
CoRR, 2013.

[30] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” CoRR, vol. abs/1710.08864, 2017.

[31] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroen-
ing, “Concolic testing for deep neural networks,” arXiv preprint
arXiv:1805.00089, 2018.

[32] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in ICML, 2017.

[33] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” 2013,
technical Report. http://arxiv.org/abs/1312.6199.

[34] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering (ICSE). ACM,
2018, pp. 303–314.

[35] Y. Vizel, A. Nadel, and S. Malik, “Solving linear arithmetic with sat-
based model checking,” in 2017 Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, 2017, pp.
47–54.

[36] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler, “Automatically
generating malicious disks using symbolic execution,” in IEEE S&P,
2006.

[37] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV, 2014.

[38] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based metamorphic testing and input validation framework for
autonomous driving systems,” in 33rd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2018.

http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1710.00486
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/s10515-013-0122-2
http://arxiv.org/abs/1312.6199

	Introduction
	Background:
	Neural Networks
	Symbolic Execution

	The DeepCheck Approach
	Translation (DeepCheck)
	Important input identification (DeepCheckImp)
	Adversarial attack generation (DeepCheckattack)

	Evaluation
	Image Classification Network
	Important pixel identification
	Adversarial generation

	Sentiment Analysis Network
	Discussion:

	Related Work
	Techniques for Attribution
	Techniques for adversarial attack generation

	Conclusion
	References

