
A Study of Symmetry Breaking Predicates and
Model Counting

Wenxi Wang1, Muhammad Usman1, Alyas Almaawi1, Kaiyuan Wang2,
Kuldeep S. Meel3, and Sarfraz Khurshid1

1 University of Texas at Austin, Austin, TX, USA
2 Google Inc., Sunnyvale, CA, USA

3 National University of Singapore, Singapore

Abstract. Propositional model counting is a classic problem that has
recently witnessed many technical advances and novel applications. While
the basic model counting problem requires computing the number of all
solutions to the given formula, in some important application scenarios,
the desired count is not of all solutions, but instead, of all unique solu-
tions up to isomorphism. In such a scenario, the user herself must try to
either use the full count that the model counter returns to compute the
count up to isomorphism, or ensure that the input formula to the model
counter adequately captures the symmetry breaking predicates so it can
directly report the count she desires.
We study the use of CNF-level and domain-level symmetry breaking
predicates in the context of the state-of-the-art in model counting, specif-
ically the leading approximate model counter ApproxMC and the re-
cently introduced exact model counter ProjMC. As benchmarks, we use
a range of problems, including structurally complex specifications of soft-
ware systems and constraint satisfaction problems. The results show that
while it is sometimes feasible to compute the model counts up to isomor-
phism using the full counts that are computed by the model counters,
doing so suffers from poor scalability. The addition of symmetry breaking
predicates substantially assists model counters. Domain-specific predi-
cates are particularly useful, and in many cases can provide full symme-
try breaking to enable highly efficient model counting up to isomorphism.
We hope our study motivates new research on designing model counters
that directly account for symmetries to facilitate further applications of
model counting.

1 Introduction
Propositional model counting is the classic problem of counting the number of
all solutions for the given formula in propositional logic. While the core problem
is an integral part of complexity theory literature, advances in propositional
satisfiability (SAT) solvers and other decision procedures in the last decade have
led to much progress in tackling this problem in innovative ways [7,9, 10,15,17,
31,39,40,47,49,50,56,64]. These advances have fueled the application of model
counters in various software verification and reliability domains, e.g., to perform

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 115–134, 2020.
https://doi.org/10.1007/978-3-030-45190-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_7&domain=pdf

probabilistic analyses [13, 26, 28], check and repair string manipulation code [9,
41], and estimate information leakage using quantified information flow [19,44].

While the basic model counting problem requires computing the number
of all solutions, in some important application scenarios, the desired count is
not of all solutions, but instead, of all unique solutions up to isomorphism, i.e.,
non-isomorphic (also called non-symmetric) solutions. For example, consider the
context of software reliability analysis [26] where a goal is to find the number of
inputs that can lead to an assertion violation, or bounded exhaustive testing [14,
42,62,68] where the goal is to estimate the total number of inputs that exist for
a certain bound on the input size to decide what bound to use to stay within
the testing budget. The desired counts in these cases are of non-isomorphic
inputs, which are non-equivalent with respect to behaviors that a program can
have because two inputs that are equivalent (and possibly not identical) produce
the same output [66]. As another example, consider computing the number of
solutions to a constraint satisfaction problem (CSP) [45], e.g., the number of
unique ways 8 queens can be arranged on a fixed chess board such that no queen
is under attack [6]. Once again, one is typically interested in the number of
non-symmetric solutions because the indistinguishability of queens implies that
a user does not consider two solutions obtained by swapping positions of queens
to be unique.

In such scenarios, the user has two basic options. One option is to compute
the full count using the model counter, and then use mathematical reasoning
about symmetries to project the full count to the desired count. Doing so is
straightforward in some cases, e.g., if each solution consists of n indistinguishable
objects of the same type and the composition of each solution implies that each
permutation of those n objects leads to a distinct (albeit isomorphic) solution,
dividing the full count by n! gives the count for non-isomorphic solutions; doing
so is however, not always easy, for example when different solutions have different
number of objects that can be permuted to form non-identical solutions. The
other option is to ensure the formula that is input to the model counter includes
symmetry breaking predicates [20,21], i.e., additional constraints that only allow
canonical solutions from each isomorphism class, so the model counter can report
the desired count.

Symmetry breaking predicates can be added using three basic approaches [29].
Perhaps the most common approach is to add them at the CNF-level by using
an off-the-shelf tool [8,23], which takes as input a CNF formula and creates sym-
metry breaking predicates for it. Another common approach is to create them at
the problem domain level using a domain-specific tool [58], and then translate
the formula and predicates together to CNF. A third approach is to add them
manually at the problem domain level [38,59], and then translate to CNF.

A goal of our work is to study what is the best way to add symmetry break-
ing predicates (if at all) to obtain precise counts of non-isomorphic solutions.
We conduct the study in the context of the state-of-the-art in model count-
ing, specifically the leading approximate model counter ApproxMC [16, 17, 52]
and the recently introduced exact model counter ProjMC [40]. ApproxMC and

116 W. Wang et al.

ProjMC embody very different algorithms for model counting and provide us
a diverse set of tools for the study. ApproxMC employs novel approximation
methods to efficiently predict highly accurate model counts with formal guaran-
tees, and is now in its third generation (called ApproxMC3 [52]). ProjMC uses
a recursive algorithm and employs a disjunctive decomposition method together
with a search for disjoint components, and just had its first public release.

As benchmark formulas, we use a range of problems, including structurally
complex specifications of software systems [34] and constraint satisfaction prob-
lems [45]. To create the benchmark formulas, we employ the Alloy toolset [34]
and its Kodkod backend [58]. Alloy allows writing formulas in relational first
order logic with transitive closure, and has been used in academia and indus-
try for design and specification of systems [11, 18, 35, 37, 65, 67, 70] as well as
for various forms of analyses of code [27, 32, 36, 42, 48, 69]. The Alloy analyzer
translates Alloy formulas with respect to a scope, i.e., bound on the universe of
discourse, into propositional logic to create CNF problems that are solved using
off-the-shelf SAT solvers [25]. Alloy supports fully automatic (partial) symmetry
breaking at the level of Alloy specifications [51,57] by adapting Crawford’s sym-
metry breaking predicates [20], which are statically added to the formula before
the solvers solve it. Alloy provides an ideal vehicle for evaluating the different
approaches to symmetry breaking that are our focus in this study.

Similar to other techniques that use CNF-based backends, the Alloy ana-
lyzer translates problems from a higher-level (Alloy) to a lower-level (CNF).
This translation often introduces new boolean variables in the resulting formula,
which are not essential for creating the CNF formula but are required for a
compact (feasible) encoding in CNF [60]. As a result, the translated formula
is equisatisfiable to the original formula but may not be equivalent to it, and
hence it may be the case that the model count for the CNF formula is very
different from the original formula. Several modern model counters [16, 40, 50]
readily handle this case by providing support for projected model counting [10],
i.e., computing the model count with respect to a subset of all the variables. For
Alloy, the subset is the primary variables, i.e., all boolean variables that directly
correspond to the variables in the Alloy specification.

For each benchmark formula f , we create three model counting problems
using automatic tools: 1) f with no symmetry breaking, which we create by
setting Alloy’s default symmetry breaking to off ; 2) f with symmetry break-
ing predicates added at the problem domain level, which we create by having
Alloy’s default symmetry breaking turned on; and 3) f with symmetry break-
ing predicates added at the CNF level, which we create by first using Alloy to
create a CNF formula with no domain-level symmetry breaking, and then us-
ing the BreakID [23] tool to add CNF-level symmetry breaking predicates using
its default settings. In addition, for select benchmarks we create formulas with
manually added domain-specific symmetry breaking predicates, which we write
in Alloy following previous work [38].

The results show that while it is sometimes feasible to compute the model
counts up to isomorphism using the full counts that are computed by the model

A Study of Symmetry Breaking Predicates and Model Counting 117

counters, doing so suffers from poor scalability. The addition of symmetry break-
ing predicates substantially assists model counters, although it is a well-known
feature in SAT solving supported by theory finding [46, 61]. Domain specific
predicates are particularly effective, and in many cases, can provide full sym-
metry breaking to enable highly efficient model counting up to isomorphism.
We were surprised by the extent of the impact. Since the addition of symme-
try breaking predicates introduces new dependencies among the variables, we
expected these dependencies to make the formula more complex and perhaps
less amenable to efficient model counting. However, the sheer reduction in the
number of solutions caused by symmetry breaking more than compensates for
the additional logical complexity of the formula. In cases where it was possible
to create full symmetry breaking predicates, the model count for the formula
with the predicates was computed up to a few orders of magnitude faster than
the formula with no symmetry breaking predicates.

A key lesson of our study (in the context of the model counting problems
considered) is: if non-isomorphic solution counts are desired, use full symmetry
breaking predicates at the domain-level whenever feasible – even if it is straight-
forward to compute the number of non-isomorphic solutions from the number
of all solutions, or even if the symmetry breaking constraints have to be written
manually. This paper makes the following contributions:

– Study. To the best of our knowledge, we present the first study of symmetry
breaking in the context of model counting. As pointed out earlier, there is
a tradeoff between the reduction of solution space and the likely increase in
complexity due to added symmetry breaking predicates. In prior work, the
benefit of symmetry breaking in SAT solving were typically observed largely
for unsatisfiable problems [43], our study shows the importance of symmetry
breaking and its deep relation to problem formulation in the context of
satisfiable problems, albeit for model counting.

– Dataset. All CNF files we used for the experiments are being made pub-
licly available: https://github.com/wenxiwang/TACAS2020. We expect the
dataset to be useful for future work on evaluating the performance of differ-
ent model counters, and of the different strategies they employ, as well as
for evaluating model enumeration tools.

We believe there is an important bi-directional relation between symmetry
breaking and model counting whereas: 1) in one direction the model counters
directly support computing the counts for non-isomorphic solutions to facilitate
applications that so require; and 2) in the other direction symmetry breaking
helps model counters become more efficient. We hope our study motivates future
work that further investigates this relation.

2 Examples
This section provides two illustrative examples that require computing the num-
ber of unique solutions up to isomorphism. We specify the examples in the Alloy

118 W. Wang et al.

module nqueens -- name of the specification

sig Queen {} -- set of queen atoms

one sig Board { state: Queen -> Int -> Int } -- one board

fact StateOkay {
all q: Queen | one q.(Board.state) -- each queen occupies exactly one cell
all x: Queen.(Board.state).Int | ValidIndex[x] -- all x-coordinates are valid
all y: Int.(Queen.(Board.state)) | ValidIndex[y] -- all y-coordinates are valid
all disj q, r: Queen | q.(Board.state) != r.(Board.state) } -- queens do not share cells

pred ValidIndex[x: Int] { x.gte[0] and x.lte[(#Queen).minus[1]] } -- x >= 0 && x <= |Queen|-1

fun X[q: Queen]: Int { (q.(Board.state)).Int } -- x-coordinate of q

fun Y[q: Queen]: Int { Int.(q.(Board.state)) } -- y-coordinate of q

fun Abs[x: Int]: Int { x.lt[0] implies negate[x] else x } -- absolute value of x

pred SameRow[q, r: Queen] { X[q] = X[r] } -- q and r are in the same row

pred SameColumn[q, r: Queen] { Y[q] = Y[r] } -- q and r are in the same column

pred SameDiagonal[q, r: Queen] { -- q and r share a diagonal
Abs[X[q].minus[X[r]]] = Abs[Y[q].minus[Y[r]]] }

pred NQueensProblem { -- no queen attacks another queen
all disj q, r: Queen | !SameRow[q, r] and !SameColumn[q, r] and !SameDiagonal[q, r] }

Fig. 1: Alloy specification of n-Queens.

language, which allows us to explore different approaches for applying symmetry
breaking. We provide intuitive descriptions of Alloy constructs as we introduce
them; further details can be found elsewhere [34].

The first example illustrates a CSP problem [45] where Alloy’s default sym-
metry breaking provides full symmetry breaking; we use ApproxMC to solve
this problem (Section 2.1). The second example illustrates a software testing
problem [42] where manually written symmetry breaking predicates provide full
symmetry breaking; we use ProjMC to solve this problem (Section 2.2). Sec-
tion 5 presents a detailed experimental evaluation where we use the two tools
against many additional benchmarks.

2.1 n-Queens
Consider specifying the well-known n-Queens problem of placing n interchange-
able queens4 on a fixed n×n chess-board, and computing the number of solutions
to the problem using a modern propositional model counter [16,40,50].

Figure 1 shows a fragment of an Alloy specification of the n-Queens problem,
which has been studied before using Alloy [2,4,55]. The keyword sig introduces
a set of (interchangeable) atoms. The keyword one makes the set a singleton. The
field state introduces a quaternary relation of type “Board x Queen x Int x Int”
where Int is a built-in type that represents integers. The fact StateOkay describes
the basic constraints for the state of the board to be valid; the fact contains
4 Here, we only consider symmetries based on permuting the queens (and not other

forms, e.g., rotations of the board.)

A Study of Symmetry Breaking Predicates and Model Counting 119

Queen={Queen$0, Queen$1, Queen$2, Queen$3,
Queen$4, Queen$5, Queen$6, Queen$7}

Board={Board$0}

Board<:state={Board$0->Queen$0->7->5, Board$0->Queen$1->6->0,
Board$0->Queen$2->5->4, Board$0->Queen$3->4->1,
Board$0->Queen$4->3->7, Board$0->Queen$5->2->2,
Board$0->Queen$6->1->6, Board$0->Queen$7->0->3}

80Z0l0Z0Z
7ZqZ0Z0Z0
60Z0Z0Z0l
5Z0Z0ZqZ0
4qZ0Z0Z0Z
3Z0l0Z0Z0
20Z0ZqZ0Z
1Z0Z0Z0l0

a b c d e f g h

Fig. 2: A solution to 8-queens created by the Alloy analyzer illustrated.

4 sub-formulas that are implicitly conjoined; each of them uses universal quan-
tification (all); the keyword disj constrains the quantified variables to represent
distinct values. The dot operator (‘.’) is relational join [34]. A predicate (pred)
is a parameterized formula that can be invoked elsewhere; likewise, a fun is a
parameterized expression. The predicate NQueensProblem represents the overall
specification of the n-Queens constraints. Any model of the Alloy specification
must satisfy the constraints in all the facts and any predicates that are invoked
(directly or transitively).

The Alloy user writes a command and executes it to solve desired constraints.
For example, “run NQueensProblem for 5 int, exactly 8 Queen” asks the ana-
lyzer to find a solution to the 8-Queens problem. This command creates a con-
straint solving problem such that the integer bit-width is 5, and there are exactly
8 queens. Figure 2 shows a valuation for each set and relation created by the
Alloy analyzer to solve this problem, and graphically illustrates the solution.

Next, we illustrate the use of the approximate model counter ApproxMC [16].
For the nqueens specification, for each 7 ≤ n ≤ 12, we create three constraint
solving problems: 1) no symmetry breaking (no-sb); 2) BreakID’s default CNF-
level symmetry breaking [23] (cnf-sb); and 3) Alloy’s default domain-level sym-
metry breaking [58] (dom-sb). Table 1 shows the number of solutions found and
time taken in each case. The model count with no symmetry breaking is the high-
est and takes the longest to compute; this approach times out for 8×8 and larger
boards. BreakID’s default CNF-level symmetry breaking significantly reduces

Table 1: ApproxMC results for n-Queens for 7 ≤ n ≤ 12. Model count (“#”) and
time taken in seconds (“t[s]”) for different problem sizes are shown. Time-out
(t.o.) is 5000 sec.

7× 7 8× 8 9× 9 10× 10 11× 11 12× 12
t[s] # t[s] # t[s] # t[s] # t[s] # t[s]

ap
pr

ox no-sb 208896 3727.1 - t.o. - t.o. - t.o. - t.o. - t.o
cnf-sb 67584 1446.4 - t.o. - t.o. - t.o. - t.o. - t.o
dom-sb 40 1.14 92 13.67 304 16.27 784 44.97 2752 199.77 15360 822.14
OEIS 40 92 352 724 2680 14200
error 0 0 0.158 -0.077 -0.026 0.076

120 W. Wang et al.

the counts and the time. Alloy’s default domain-level symmetry breaking is the
most effective, and for this problem, removes all symmetries. Some of the approx-
imate model counts reported by ApproxMC are coincidentally the exact counts.
We validated the counts using the On-line Encyclopedia of Integer Sequences
(OEIS) [6]: the sequence #A000170 represents the number of solutions for the
n-Queen problem. The counts computed using Alloy’s default symmetry break-
ing with ApproxMC up to board size 8× 8 form a subsequence of A000170. For
the other board sizes, the table lists the error, which is max(approxexact ,

exact
approx)− 1,

based on multiplicative guarantees.
Note that the non-isomorphic solution count can easily be estimated from the

full count for this problem. For example, for the 7×7 board we can estimate it as
208896

7! = 41.44, which is quite close to the actual count of 40. While the calcula-
tion is simple, the time to compute the full count is much higher (3727.1 seconds
instead of 1.14 seconds). Moreover, for larger board sizes, computing the full
count times out, so using it for those sizes may be simply infeasible. This ex-
ample illustrates a case where symmetry breaking predicates reduce both the
model count and the time to compute it by relatively large factors.
3-queens. Table 2 shows the results for a variation of the n-queens problem
where the number of queens is fixed to 3, and the board size varies. To specify this
variation, we replace the expression “(#Queen).minus[1]” in predicate ValidIndex
with the value of “k − 1” for the board size k × k, and set the scope for Queen
to “exactly 3” in the run command. We validate the ApproxMC counts using
the OEIS sequence #A047659 [6]. Once again, BreakID’s CNF-level predicates
significantly reduce the model count and time to compute it, and Alloy’s domain-
level predicates reduce them further. Since the number of queens is fixed to
3, the ratio of total number of solutions (no-sb) to number of non-isomorphic
solution is 3! = 6. For example, for 11 × 11 board, the ratio for ApproxMC
counts is exactly 6; however, the time to compute the full count is, as before,
much higher (1307.04 seconds instead of 45.1 seconds). This example shows a
case where symmetry breaking predicates reduce the model count by a relatively
small factor but the time to compute the counts by a much larger factor.

2.2 Data structure invariants
Next, consider the context of bounded exhaustive testing where the program
under test is run against every non-equivalent input within a bound on the

Table 2: ApproxMC results for 3-Queens where 3 queens are placed on n × n
board for 8 ≤ n ≤ 12.

8× 8 9× 9 10× 10 11× 11 12× 12
t[s] # t[s] # t[s] # t[s] # t[s]

ap
pr

ox no-sb 64512 107.56 176128 368.65 335872 695.55 688128 1307.04 1081344 4811.86
cnf-sb 18944 30.26 51200 67.43 122880 153.16 241664 280.15 417792 567.48
dom-sb 9728 7.94 25088 12.78 57344 26.14 114688 45.1 200704 111.76
OEIS 10320 25096 54400 107880 199400
error 0.061 0.000 -0.051 -0.059 -0.006

A Study of Symmetry Breaking Predicates and Model Counting 121

one sig BT {
root: lone Node }

sig Node {
left, right: lone Node }

pred Acyclic(t: BT) {
all n: t.root.*(left + right) {

n !in n.^(left + right) -- no directed cycle
lone n.~(left + right) -- at most one parent
no n.left & n.right }} -- children are different

pred RepOk(t: BT) { Acyclic[t] }
...

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1 N2

trees with 3 nodes. N0 is the root.

input size, and the inputs are characterized by a logical formula [42]. Assume
the goal is to identify a bound that will lead to a feasible number of inputs that
can be executed within the testing budget. We use model counting to estimate
the number of solutions for different bounds.

Assume the inputs to the program under test are binary trees. Figure 3a shows
a partial Alloy specification for binary trees. The singleton sig BT represents the
tree, which has a root node and an integer size; the keyword lone defines a partial
function, so, e.g., the tree root is either exactly one node or none. Each node
has an integer key and a left and a right child. The predicate RepOk specifies
the constraints for a valid binary tree, which must be acyclic. The predicate
Acyclic specifies acyclicity; the operator “ˆ” is transitive closure, “*” is reflexive
transitive closure, “+” is set union, “&” is set intersection, and “˜” is transpose.

Consider the constraint solving problem for size k so that the binary tree
has exactly k nodes and the keys are 1, . . . , k. Figure 3b illustrates the 5 non-
isomorphic trees for size 3.

To show that the impact of symmetry is not limited to only approximate
counting, we perform this case study with the exact model counter ProjMC [40].
Table 3 shows the model counts for different sizes. As before, CNF-level sym-
metry breaking reduces the model count, which is further reduced by Alloy’s

Table 3: ProjMC results for binary tree constraints for trees with 6, 7, 8, 9, and
10 nodes. Time-out (t.o.) is 5000 sec.

6 7 8 9 10
t[s] # t[s] # t[s] # t[s] # t[s]

ex
ac

t

no-sb 95040 5.57 2162160 129.25 57657600 3673.89 - t.o. - t.o.
cnf-sb 61538 7.39 1538628 184.97 25955296 3466.19 - t.o. - t.o.
dom-sb 357 0.10 1866 0.70 10286 4.94 60616 40.21 373001 610.35
man-sb 132 0.03 429 0.09 1430 0.34 4862 1.48 16796 10.53
OEIS 132 429 1430 4862 16796

122 W. Wang et al.

Fig. 3: (a) Alloy specification of binary trees. (b) Five non-isomorphic binary

fact SymmetryBreaking { // pre-order
BT.root in first[]
all n: BT.root.*(left + right) {

some n.left implies n.left in next[n]
no n.left implies n.right in next[n]
some n.right and some n.left implies

n.right in next[max[n.left.*(left + right)]] }}

Fig. 4: Full symmetry breaking predicates in Alloy [38].

default symmetry breaking. However, unlike before, CNF-level symmetry break-
ing sometimes makes the model counter, which is ProjMC in this case, slower.
Moreover, Alloy’s default symmetry breaking does not break all symmetries. For
this example, they can be broken using manually written predicates. Binary trees
belongs to a restricted class of data structures for which full symmetry break-
ing can be achieved by writing predicates in Alloy so that only the canonical
solution from each isomorphism class is allowed [38]. Figure 4 shows a fact that
embodies this approach. Intuitively, the fact requires that a pre-order traversal
starting at the root visits the nodes in the same order as a pre-defined linear
ordering of the nodes; the ordering module in Alloy allows defining a linear or-
der. The manually written predicates provide the most efficient counting. In this
example the count up to isomorphism can, once again, be computed from the
full count but at a much higher computational cost. For example, for 8 nodes,
the full count is 57657600, which divided by 8! is 1430, i.e., the count up to
isomorphism, but ProjMC takes 3673 seconds to compute the full count whereas
once the manual symmetry breaking predicates are added it takes 0.34 seconds.
The number of binary trees with n nodes is the OEIS sequence #A000108, which
allows us to validate that the manually written predicates are indeed breaking
all symmetries.

3 Background: Model counting
This section gives the relevant background on model counting, with a focus on
projected and approximate model counting.

Let ϕ be a Boolean formula in conjunctive normal form (CNF) over the
variable set X. An assignment σ of truth values to the variables in ϕ is called
solution of ϕ if it makes ϕ evaluate to true. We denote the set of all witnesses of
F by RF . Given a set of variables S ⊆ X and an assignment σ, we use σ ↓ S to
denote the projection of σ on S. Similarly, Rϕ↓S denotes projection of Rϕ on S.

The projected model counting problem is to compute |Rϕ↓S | for a given CNF
formula F and sampling set S ⊆ X. When S = X, the problem is referred
to as model counting. A probably approximately correct (or PAC) counter is a
probabilistic algorithm ApproxCount(·, ·, ·, ·) that takes as inputs a formula F , a
sampling set S, a tolerance ε > 0, and a confidence 1− δ ∈ (0, 1], and returns a
count c such that Pr

[
|Rϕ↓S |/(1 + ε) ≤ c ≤ (1 + ε)|Rϕ↓S |

]
≥ 1 − δ. For clarity,

we omit mention of S unless needed for a given context.
Projected Model counting is a fundamental problem in computer science with

applications ranging from reliability of networks to information leakage. Valiant

A Study of Symmetry Breaking Predicates and Model Counting 123

initiated complexity theoretic studies of model counting and showed that model
counting is #P-hard [63]. The earliest practical approaches to model counting
such as Relsat [12], were based on extending DPLL approaches. The advent of
CDCL solvers led to the paradigm of combining conflict driven search with com-
ponent caching leading to the development of solvers such as Cachet [49] and
sharpSAT [56]. Furthermore, Darwiche and Marquis [22] pioneered a knowledge-
compilation-based approach, relying on the static partitioning of the solution
space, which led to development of c2d. The recent years have witnessed combi-
nation of CDCL and static approaches with solvers such as D4 and DSharp. Re-
cently, Lagniez and Marquis proposed a recursive algorithm, called ProjMC [40],
that exploits the disjunctive decomposition technique pioneered in earlier works
to perform projected model counting. Concurrently, another approach, called
Ganak [50], for projected model counting has been developed that provides
probabilistic exact bounds via usage of universal hash functions. In this work,
we focus on ProjMC due to its ability to provide exact counts and demonstrated
scalability in comparison to other approaches.

The theoretical studies of approximation led to the introduction of PAC style,
also referred to as (ε, δ), guarantees wherein the underlying algorithm returns
an estimate within (1 + ε) factor of the exact count with confidence at least
1− δ. Stockmeyer [54] demonstrated that PAC guarantees can be achieved by a
probabilistic polynomial Turing machine with access to NP oracle. The practical
exploration of Stockmeyer’s approach was pursued with Gomes et al with the
development of MBound [31] and SampleCount [30]. Chakraborty, Meel, and
Vardi proposed a scalable approximate counter, called ApproxMC, with formal
(ε, δ) guarantees which seeks to combine the advances in SAT solving with design
of efficient universal hash functions.

ApproxMC is now in its third generation, called ApproxMC3. The central
idea behind ApproxMC is to employ universal hash functions, represented by
randomly chosen XOR constraints, to partition the solution space into roughly
equal small cells where every cell can be defined by the original constraints
augmented with randomly chosen XOR constraints. ApproxMC invokes Cryp-
toMinisat [53], a solver designed specifically for combination of CNF and XOR
constraints, to enumerate solutions in a randomly chosen small cell. ApproxMC2
achieves a significant reduction in the number of SAT calls from linear in |S| to
log(|S|) by exploiting dependence among different SAT calls. Soos and Meel
proposed ApproxMC3 by augmenting ApproxMC2 with a new architecture to
handle CNF+XOR formulas [52].

4 Study methodology
This section describes the overall design of our study, including the model count-
ing tools, the generation of constraint solving problems, and the measurements
for evaluation.

4.1 Tools
For approximate model counting, we use ApproxMCv3 (https://github.com/
meelgroup/ApproxMC), which is the latest public release of ApproxMC [52]. For

124 W. Wang et al.

each model counting problem, we list the primary variables in the input CNF file
as a comment as required by ApproxMC. For exact model counting, we use the
latest public release of ProjMC [40] (http://www.cril.univ-artois.fr/kc/
projmc.html). For each model counting problem, we list the primary variables
in a separate file as required by ProjMC.

4.2 Benchmarks
Base formulas. We use four sources of base formulas.
(1) Alloy specs. We consider all Alloy specifications in the standard distribu-
tion [1]; each command in an Alloy spec defines a constraint solving problem
and provides a scope; we use the given scope. We remove unsatisfiable problems
since their model count is 0 (regardless of symmetry breaking), and our focus
in this study is on satisfiable problems. We also remove all “easy” cases that
complete within 1 second for both tools and all symmetry settings. This creates
a set of 47 base problems derived from Alloy specifications.
(2) Kodkod problems. We consider all Kodkod programs in the standard distri-
bution [5]. Once again, we remove the unsatisfiable problems and “easy” cases.
In addition, we remove problems that do not admit symmetry breaking, i.e.,
where Kodkod does not add any symmetry breaking by default (e.g., when there
is a given partial solution, which prevents Kodkod’s greedy base partitioning [57]
from having an effect). Some of the Kodkod programs are parameterized over
integer bounds and input files. We manually create those inputs in the appro-
priate format. This gives us a total of 13 base problems derived from Kodkod
programs.
(3) n-Queens. We use 2 common variations of the n-Queens problem: 1) k queens
are placed on a k × k board (1 ≤ k ≤ 12); 2) 3 queens are placed on a k × k
board (1 ≤ k ≤ 12). This gives us a total of 24 base problems derived from the
n-Queens problem5.
(4) Complex data structures. We use 6 complex data structures: (1) singly-linked
lists; (2) sorted lists; (3) doubly-linked lists; (4) binary trees; (5) binary search
trees; and (6) red-black trees. For each structure, we bound the number of nodes
to be between 6 and 9 (inclusive). This gives us a total of 24 base problems based
on structural invariants.
Model counting benchmarks. For each base formula f , we create 3 model
counting problems using automatic tools: 1) f with no symmetry breaking, which
we create by setting Alloy’s default symmetry breaking to off ; 2) f with symme-
try breaking predicates added at the CNF level, which we create by first using
Alloy to create a CNF formula with no domain-level symmetry breaking, and
then using the BreakID [23] tool to add CNF-level symmetry breaking predicates
using the same arguments as in the SATRACE’15 competition [3]; and 3) f with
symmetry breaking predicates added at the problem domain level, which we cre-
ate by having Alloy’s default symmetry breaking turned on. Moreover, for data
5 Unfortunately, we were not able to get the results for majority of the n-Queens

benchmarks with ProjMC due to an unknown issue with the tool, so we do not
use the n-Queens benchmarks for experiments with ProjMC; we have requested the
ProjMC team to look into the issue.

A Study of Symmetry Breaking Predicates and Model Counting 125

structures, we create formulas with manually added domain-specific symmetry
breaking predicates, which we write in Alloy following previous work [38]. This
gives us a total of 348 model counting problems.

Table 4 shows some characteristics of the benchmarks, specifically the mini-
mum and maximum numbers of primary variables, and all variables and clauses
under the different symmetry breaking settings.

4.3 Metrics
We use two key metrics – the model counts and the time to compute them – and
measure them under different symmetry breaking settings. For model counts, we
report the tool output and the ratio of the count under one setting to the count
under another setting. For time, we report the actual wall-clock times, and the
ratio of time taken under one setting to the time taken under another setting.
In line with prior work [17], we report the error rate of the approximate model
counting which is max(approxexact ,

exact
approx)− 1, based on multiplicative guarantees.

5 Experimental evaluation
The section reports the results of the experimental evaluation. Section 5.1 de-
scribes the results for ApproxMC. Section 5.2 describes the results for ProjMC.

5.1 Symmetry breaking and approximate model counting
Time. Figures 5a, 5c, and 5e illustrate the time performance of ApproxMC
on the benchmarks based on Alloy, Kodkod, and data structure invariants re-
spectively. With no symmetry breaking, ApproxMC times out on 21 (of 47)
Alloy benchmarks, 6 (of 13) Kodkod benchmarks, and 10 (of 24) data struc-
ture benchmarks. In all but 16 cases, formulas with Alloy’s default symmetry
breaking take less time than with CNF-level symmetry breaking. In all but 10
cases, formulas with CNF-level symmetry breaking take less time than with no
symmetry breaking. Moreover, for data structure benchmarks, in all but 1 cases,
formulas with manual symmetry breaking take less time than Alloy’s default
symmetry breaking. Among all the problems that time out with no symmetry
breaking, the smallest time taken by the corresponding problem with Alloy’s
default symmetry breaking was 0.14 seconds, and the smallest time taken by

Table 4: Benchmark characteristics.
source #prim. no-sb cnf-sb dom-sb man-sb

#var. #clause #var. #clause #var. #clause #var. #clause
Alloy: min 46 384 620 522 1037 384 620 - -
Alloy: max 2048 93764 291349 93764 289725 93764 291349 - -
Kodkod: min 48 631 188 932 628 990 188 - -
Kodkod: max 8188 388755 764957 397566 834629 453358 877429 - -
n-Queens: min 1024 3762 7163 3762 7163 3762 7163 - -
n-Queens: max 12288 200074 532527 201064 523947 269141 704396 - -
Data Str.: min 43 992 3039 1091 3337 1209 3401 1006 3155
Data Str.: max 510 18694 48290 19045 45562 19808 50212 18993 50696

126 W. Wang et al.

0.01

0.1

1

10

100

1000

10000
0 5 10 15 20 25 30 35 40 45 50

Ti
m

e

Alloy Subjects

cnf_nosb domain_sb cnf_sb

(a) Time: ApproxMC – Alloy

0.01

0.1

1

10

100

1000

10000
0 5 10 15 20 25 30 35 40 45 50

tim
e

Alloy Subjects

no_sb domain_sb cnf_sb

(b) Time: ProjMC – Alloy

0.1

1

10

100

1000

10000
0 2 4 6 8 10 12 14

Ti
m

e

Kodkod Subjects

no_sb domain_sb cnf_sb

(c) Time: ApproxMC – Kodkod

0.1

1

10

100

1000

10000
0 2 4 6 8 10 12 14

Ti
m

e

Kodkod Subjects

no_sb domain_sb cnf_sb

(d) Time: ProjMC – Kodkod

0.001

0.01

0.1

1

10

100

1000

10000
0 4 8 12 16 20 24

Ti
m

e

Data Structure Subjects

no_sb alloy_sb cnf_sb manual_sb

(e) Time: ApproxMC – Data structures

0.001

0.01

0.1

1

10

100

1000

10000
0 4 8 12 16 20 24

Ti
m

e

Data Structure Subjects

no_sb domain_sb cnf_sb manual_sb

(f) Time: ProjMC – Data structures

Fig. 5: Time results. x-axis has benchmark model counting problems. y-axis has
time in seconds (log-scale). Benchmarks on x-axis are sorted in ascending order
based on the number of primary variables; moreover, the data structure bench-
marks are grouped by the type of the structure. Blue diamond is no symmetry
breaking (no-sb) ; red triangle is CNF-level symmetry breaking (cnf-sb); green
square is Alloy’s default symmetry breaking (dom-sb); and orange cross is man-
ual symmetry breaking (man-sb).

the corresponding problem with manual symmetry breaking was 0.008 seconds.
For the Alloy benchmarks, ApproxMC does not time-out under any symmetry
breaking setting for benchmarks that have up to 90 primary variables. The time
results for the n-Queens benchmarks were presented in Section 2.1.
Model counts. Figure 6a graphically illustrates how the model counts vary
under different symmetry breaking settings. For the Alloy and Kodkod bench-
marks, in all but 10 cases the model count for the formula with Alloy’s default
symmetry breaking is less than the corresponding count with CNF-level sym-

A Study of Symmetry Breaking Predicates and Model Counting 127

(a) Model count: ApproxMC

(b) Model count: ProjMC

Fig. 6: Model count results. x-axis has benchmark model counting problems. y-
axis (log-scale) has count ratio n/c where n is the model count for the formula
with no symmetry breaking and c is the corresponding count with CNF-level
symmetry breaking (green-square), Alloy’s default symmetry breaking (blue-
diamond), and manual symmetry breaking (red-triangle – only for data struc-
tures). Only cases where the calculation of n did not time out are shown.

metry breaking. For the data structures, the model count for the formula with
Alloy’s symmetry breaking is less than the corresponding count with CNF-level
symmetry breaking in all cases; moreover, in all but 5 cases, manual symmetry
breaking gives the lowest count (the 5 exceptions are due to approximation in
computing the model counts). Among all problems where ApproxMC reports a
count with no symmetry breaking, the largest ratio of count with no symmetry
breaking to count with Alloy’s default symmetry breaking was 61167, and the
largest ratio of count with no symmetry breaking to count with manual symme-
try breaking was 45056. The model count results for the n-Queens benchmarks
were presented in Section 2.1.

128 W. Wang et al.

Error. For the Alloy, Kodkod, and data structure benchmarks, we compute the
error in ApproxMC with respect to the counts reported by ProjMC for the cases
where ProjMC reported a count. The error ranges were: [0, 0.168] for the Alloy
benchmarks, [0, 0.168] for the Kodkod benchmarks, and [0, 0.165] for the data
structure benchmarks. Section 2.1 presented the error results for the n-Queens
benchmarks with respect to the number in OEIS [6].

5.2 Symmetry breaking and exact model counting
Time. Figures 5b, 5d, and 5f illustrate the time performance of ProjMC on the
benchmarks based on Alloy, Kodkod, and data structure invariants respectively.
With no symmetry breaking, ProjMC times out on 21 (of 47) Alloy benchmarks
(which is the same number as ApproxMC although the two sets of benchmarks
are not the same), 9 (of 13) Kodkod benchmarks (which is more that the num-
ber for ApproxMC), and 9 (of 24) data structure benchmarks (which is more
than ApproxMC). In all but 8 cases, formulas with Alloy’s default symmetry
breaking take less time than with CNF-level symmetry breaking. In all but 24
cases, formulas with CNF-level symmetry breaking take less time than with no
symmetry breaking. Moreover, for data structure benchmarks, in all but 2 cases,
formulas with manual symmetry breaking take less time than Alloy’s default
symmetry breaking. Among all the problems that time out with no symmetry
breaking, the smallest time taken by the corresponding problem with Alloy’s
default symmetry breaking was 3.12 seconds, and the smallest time taken by the
corresponding problem with manual symmetry breaking was 0.01 seconds.
Model counts. Figure 6b graphically illustrates how the model counts vary
under different symmetry breaking settings. For the Alloy and Kodkod bench-
marks, in all but 9 cases the model count for the formula with Alloy’s default
symmetry breaking is less than the corresponding count with CNF-level sym-
metry breaking. For the data structures, the model count for the formula with
Alloy’s symmetry breaking is less than the corresponding count with CNF-level
symmetry breaking in all cases; moreover, in all cases, manual symmetry break-
ing gives the lowest count. Among all problems where ApproxMC reports a
count with no symmetry breaking, the largest ratio of count with no symme-
try breaking to count with Alloy’s default symmetry breaking was 40320, and
the largest ratio of count with no symmetry breaking to count with manual
symmetry breaking was 362880.

Overall, the impact of symmetry breaking is significant for both ApproxMC
and ProjMC. In majority of the cases, Alloy’s default symmetry breaking is more
effective than CNF-level symmetry breaking using BreakID. For data structure
benchmarks, manual symmetry breaking is the most effective, and reports ex-
actly the counts of the non-isomorphic solutions as desired; moreover, in cases
where Alloy’s default symmetry breaking provides full symmetry breaking, man-
ual symmetry breaking provides much faster solving.

5.3 Discussion
The empirical evaluation in the preceding subsections clearly demonstrates the
significant impact of symmetry breaking on ApproxMC and ProjMC. While a

A Study of Symmetry Breaking Predicates and Model Counting 129

detailed study to explain the observed behavior is beyond the scope of this work,
we offer some explanations. As pointed out by Soos and Meel [52], over 99% of
the runtime of ApproxMC is consumed by the underlying SAT solver handling
CNF-XOR formulas. The usage of symmetry breaking predicates for satisfiable
instances typically leads to smaller overheads in runtime in the context of sat-
isfiability queries. As discussed above, the use of symmetry breaking predicates
significantly reduces the number of solutions and thereby leads to the significant
reduction in the number of XORs to be added by ApproxMC. Note that the
number of XORs to be added is logarithmically proportional to the number of
solutions of a formula. The performance of SAT solvers has been observed to be
sensitive to the number of XORs [24] and therefore, we believe that reduction
in the required number of XORs is the primary reason behind the performance
improvements in the context of ApproxMC.

The performance improvement of ProjMC is, however, more surprising since
it is not necessarily the case that reduction in the number of solutions would lead
to reduction in the size of the corresponding d-DNNF (decision-Deterministic De-
composable Negation Normal Form), which represents the trace of the execution
of ProjMC [33]. Furthermore, given the lack of noticable difference in runtime
performance improvement via off-the-shelf symmetry breaking tools, it would
be an interesting direction of future work to understand the difference in the
traces between the formulas generated via Alloy’s default symmetry breaking
and CNF-level symmetry breaking.

6 Conclusions

This paper presented, to the best of our knowledge, the first study of symmetry
breaking and model counting. A goal of the study was to determine what is the
best way to add symmetry breaking predicates (if at all) to obtain precise counts
of non-isomorphic solutions. We studied two model counters from two different
classes and four scenarios of applying symmetry breaking. A key lesson of our
study is that domain-specific symmetry breaking predicates are most effective
at enabling precise computation of model counts up to isomorphism. We believe
the results of our study can provide insights into more effective use of cutting
edge model counters in important domains where the number of unique solutions
up to isomorphism is desired, and also enable developing novel model counting
methods that exploit symmetries.

Acknowledgments

This work was supported in part by the U.S. National Science Foundation Grant
CCF-1718903, and the National Research Foundation Singapore under its AI
Singapore Programme [AISG-RP-2018-005].

130 W. Wang et al.

References

1. Alloy GitHub repository, 2019. https://github.com/AlloyTools/org.
alloytools.alloy.

2. Alloy models repository, 2019. https://github.com/AlloyTools/models.
3. BreakID BitBucket repository, 2019. https://bitbucket.org/krr/breakid/src/

master/.
4. Kodkod examples repository, 2019. https://github.com/emina/kodkod/tree/

master/examples.
5. Kodkod GitHub repository, 2019. https://github.com/emina/kodkod.
6. The on-line encyclopedia of integer sequences, 2019. https://oeis.org/.
7. Alyas Almaawi, Nima Dini, Cagdas Yelen, Milos Gligoric, Sasa Misailovic, and

Sarfraz Khurshid. Predictive constraint solving and analysis. In International Con-
ference on Software Engineering, New Ideas and Emerging Results (ICSE-NIER),
2020. To appear.

8. Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: Efficient
symmetry-breaking for boolean satisfiability. In 40th Annual Design Automation
Conference, pages 836–839, 2003.

9. Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-based model counting
for string constraints. In CAV (1), volume 9206 of Lecture Notes in Computer
Science, pages 255–272, 2015.

10. Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter J. Stuckey. Pro-
jected model counting. CoRR, abs/1507.07648, 2015.

11. Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. A formal approach
for detection of security flaws in the android permission system. Formal Asp.
Comput., 30(5):525–544, 2018.

12. Roberto J. Bayardo, Jr., and J. D. Pehoushek. Counting models using connected
components. In In AAAI, pages 157–162, 2000.

13. Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Păsăreanu, and
Willem Visser. Compositional solution space quantification for probabilistic soft-
ware analysis. SIGPLAN Not., 49(6):123–132, June 2014.

14. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Auto-
mated testing based on Java predicates. In ISSTA, pages 123–133, 2002.

15. Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and Moshe Y. Vardi. Ap-
proximate probabilistic inference via word-level counting. In Proc. of AAAI, 2016.

16. Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable approx-
imate model counter. In Proc. of CP, pages 200–216, 2013.

17. Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic im-
provements in approximate counting for probabilistic inference: From linear to
logarithmic SAT calls. In Proc. of IJCAI, 2016.

18. Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of transactions
and weak memory in x86, Power, ARM, and C++. SIGPLAN Not., 53(4):211–225,
2018.

19. David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative analysis of
the leakage of confidential data. Electr. Notes Theor. Comput. Sci., 59(3):238–251,
2001.

20. James Crawford. A theoretical analysis of reasoning by symmetry in first-order
logic (extended abstract). In Workshop notes, AAAI-92 workshop on tractable
reasoning, 1992.

A Study of Symmetry Breaking Predicates and Model Counting 131

21. James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. KR, 96:148–159, 1996.

22. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Int.
Res., 17(1):229–264, September 2002.

23. Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved
static symmetry breaking for SAT. In TACAS, pages 104–122, 2016.

24. Jeffrey Dudek, Kuldeep S. Meel, and Moshe Y. Vardi. Combining the k-cnf and xor
phase-transitions. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 7 2016.

25. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing,
pages 502–518, 2004.

26. Antonio Filieri, Corina S. Păsăreanu, and Willem Visser. Reliability analysis in
symbolic pathfinder. In International Conference on Software Engineering, pages
622–631, 2013.

27. J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias. Taco: Efficient
SAT-based bounded verification using symmetry breaking and tight bounds. Trans-
actions on Software Engineering, 2013.

28. Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic
execution. In International Symposium on Software Testing and Analysis, pages
166–176, 2012.

29. Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint
programming. In Handbook of Constraint Programming, pages 329–376. 2006.

30. Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman. Short XORs
for model counting: From theory to practice. In Theory and Applications of Satis-
fiability Testing (SAT), pages 100–106, 2007.

31. Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new
strategy for obtaining good bounds. In 21st National Conference on Artificial
Intelligence - Volume 1, pages 54–61, 2006.

32. Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-
based program repair using SAT. In TACAS, pages 173–188, 2011.

33. Jinbo Huang and Adnan Darwiche. Dpll with a trace: From sat to knowledge
compilation. In IJCAI, volume 5, pages 156–162, 2005.

34. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006.

35. Daniel Jackson and Kevin J. Sullivan. COM revisited: Tool-assisted modelling of
an architectural framework. In SIGSOFT FSE, pages 149–158, 2000.

36. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In
ISSTA, August 2000.

37. Sarfraz Khurshid and Daniel Jackson. Exploring the design of an intentional nam-
ing scheme with an automatic constraint analyzer. In ASE, pages 13–22, 2000.

38. Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. A case for
efficient solution enumeration. In SAT, pages 272–286, 2003.

39. Seonmo Kim and Stephen McCamant. Bit-vector model counting using statistical
estimation. In TACAS (1), pages 133–151, 2018.

40. Jean-Marie Lagniez and Pierre Marquis. A recursive algorithm for projected model
counting. AAAI, 33:1536–1543, 2019.

41. Loi Luu, Shweta Shinde, Prateek Saxena, and Brian Demsky. A model counter for
constraints over unbounded strings. SIGPLAN Not., 49(6):565–576, June 2014.

42. Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated
testing of Java programs. In ASE, 2001.

132 W. Wang et al.

43. Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. Cdclsym:
Introducing effective symmetry breaking in sat solving. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 99–
114. Springer, 2018.

44. Quoc-Sang Phan and Pasquale Malacaria. Abstract model counting: a novel ap-
proach for quantification of information leaks. In 9th ACM Symposium on Infor-
mation, Computer and Communications Security, pages 283–292, 2014.

45. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall Press, 2009.

46. Karem Sakallah. Symmetry and satisfiability. Frontiers in Artificial Intelligence
and Applications, 185, 01 2009.

47. Marko Samer and Stefan Szeider. Algorithms for propositional model counting.
Journal of Discrete Algorithms, 8(1):50–64, 2010.

48. Hesam Samimi, Ei Darli Aung, and Todd D. Millstein. Falling back on executable
specifications. In ECOOP, pages 552–576, 2010.

49. Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi.
Combining component caching and clause learning for effective model counting. In
SAT, 2004.

50. Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. GANAK: A
scalable probabilistic exact model counter. In IJCAI, pages 1169–1176, 2019.

51. Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search
problems. In Proc. Workshop on Theory and Applications of Satisfiability Test-
ing, June 2001.

52. Mate Soos and Kuldeep S. Meel. Bird: Engineering an efficient cnf-xor sat solver
and its applications to approximate model counting. In Proceedings of AAAI Con-
ference on Artificial Intelligence (AAAI), 1 2019.

53. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryp-
tographic problems. In Theory and Applications of Satisfiability Testing (SAT),
pages 244–257, 2009.

54. Larry Stockmeyer. The complexity of approximate counting. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages
118–126, New York, NY, USA, 1983. ACM.

55. Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
Automated test generation and mutation testing for Alloy. In ICST, 2017.

56. Marc Thurley. SharpSAT – Counting models with advanced component caching
and implicit BCP. In Armin Biere and Carla P. Gomes, editors, Theory and Ap-
plications of Satisfiability Testing - SAT 2006, pages 424–429, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

57. Emina Torlak. A Constraint Solver for Software Engineering: Finding Models and
Cores of Large Relational Specifications. PhD thesis, Cambridge, MA, USA, 2009.
AAI0821754.

58. Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In TACAS,
2007.

59. Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate: Automated
synthesis of hardware exploits and security litmus tests. In MICRO, 2018.

60. G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages
466–483. 1983.

61. Alasdair Urquhart. The symmetry rule in propositional logic. Discrete Applied
Mathematics, 96-97:177 – 193, 1999.

62. Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. TestMC: A framework
for testing model counters. Under submission, 2020.

A Study of Symmetry Breaking Predicates and Model Counting 133

63. Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM
J. Comput., 8:410–421, 1979.

64. Guy Van Den Broeck. First-order model counting in a nutshell. In Twenty-Fifth
International Joint Conference on Artificial Intelligence, pages 4086–4089, 2016.

65. Marko Vasic, David Soloveichik, and Sarfraz Khurshid. CRNs exposed: Systematic
exploration of chemical reaction networks. CoRR, abs/1912.06197, 2019.

66. E. J. Weyuker and T. J. Ostrand. Theories of program testing and the application
of revealing subdomains. TSE, 6(3):236–246, May 1980.

67. John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. Au-
tomatically comparing memory consistency models. In 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL), pages 190–204, 2017.

68. Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A frame-
work for generating object-oriented unit tests using symbolic execution. In 11th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS), pages 365–381, 2005.

69. Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Contract-based data structure re-
pair using Alloy. In ECOOP, pages 577–598, 2010.

70. Pamela Zave. How to make Chord correct (using a stable base). CoRR,
abs/1502.06461, 2015.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

134 W. Wang et al.

	7 A Study of Symmetry Breaking Predicates andModel Counting
	1 Introduction
	2 Examples
	2.1 n-Queens
	2.2 Data structure invariants

	3 Background: Model counting
	4 Study methodology
	4.1 Tools
	4.2 Benchmarks
	4.3 Metrics

	5 Experimental evaluation
	5.1 Symmetry breaking and approximate model counting
	5.2 Symmetry breaking and exact model counting
	5.3 Discussion
	6 Conclusions
	Acknowledgments
	References

