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ABSTRACT

Build automation is critical for developers to check if their code

compiles, passes all tests and is safe to deploy to the server. Many

companies adopt Continuous Integration (CI) services to make

sure that the code changes from multiple developers can be safely

merged at the head of the project. Internally, CI triggers builds to

make sure that the new code change compiles and passes the tests.

For any large company which has a monolithic code repository

and thousands of developers, it is hard to make sure that all code

changes are safe to submit in a timely manner. The reason is that

each code change may involve multiple builds, and the company

needs to run millions of builds every day to guarantee developers’

productivity.

Google is one of those large companies that need a scalable

build service to support developers’ work. More than 100,000 code

changes are submitted to our repository on average each day, in-

cluding changes from either human users or automated tools.More

than 15 million builds are executed on average each day. In this

paper, we first describe an overview of our scalable build service

architecture. Then, we discuss more details about how we make

build scheduling decisions. Finally, we discuss some experience in

the scalability of the build service system and the performance of

the build scheduling service.
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1 INTRODUCTION

Building is a central phase in the software development process in

which developers use compilers, linkers, build files and scripts to

assemble their code into executable units. Modern build tools like

Gradle [6], Buck [2] and Bazel [1] support projects in multiple lan-

guages and build outputs for multiple platforms. Programming is

often described as an “edit-compile-debug” cycle in which a pro-

grammer makes a change, compiles, and tests the resulting binary,

then repeats the cycle until the program behaves as expected. Slow

buildsmay cause the programmer to be distracted by other tasks or

lose context, and reduce the number of code submissions per day.

Any delay increases the gap between the programmer deciding on

the next change to perform and viewing the effect of that change.

Although developers can run their builds on their local work-

station, the ability to build software remotely is also critical. For

example, the build environment of the local workstation may be

different, e.g. flags, platforms and build speed, and that difference

may cause a build to succeed on one machine but fail on the other

machine. A remote build allows us to control the environment and

make sure the build result is consistent and reliable. Moreover,

many critical services rely on a remote build service. For exam-

ple, the Continuous Integration (CI) service needs to run builds on

remote machines. The software release service also needs to build

software every day to make sure products can rollout on time.

To provide a fast and smooth software building experience, we

have designed a build service system that is able to run tens of

millions of remote builds per day.We list some challenges the build

service system needs to solve at Google:

• Scalability. The system should be able to handle hundreds of

build requests per second and run millions of builds per day.

• Low Latency. We don’t want to slow down the developers pro-

ductivity, so the build service overhead should be small and rea-

sonable. The build execution time should be reasonably fast.

• Reliability. Since the number of builds is significantly higher

than the number of machines to run those builds, we need to

reliably keep track of created builds and run them whenever a

machine is available. Moreover, since the number of machines

is large, machine failure is not a matter of if, but when. So we

need to tolerate machine failures and be able to retry the build

whenever that happens.

• Priority. The builds should be prioritized. Some builds are more

important and should be scheduled to run sooner than other

builds. For example, a human triggered build is often more im-

portant than an automation tool triggered build, because it is

more costly for a human to wait.
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java_library(

name = "Greeter",

srcs = ["Greeting.java"],

)

java_library(

name = "HelloWorld",

srcs = ["HelloWorld.java"],

)

java_binary(

name = "HelloWorldMain",

main_class = "HelloWorld",

runtime_deps =

[":HelloWorld"],

)

java_library(

name = "HelloWorldTest",

srcs =

["HelloWorldTest.java"],

deps = [":HelloWorld"],

)

java_test(

name = "AllTests",

size = "small",

tags = ["requires-gpu"],

deps = [":HelloWorldTest"],

)

Figure 1: Example build specification

• Instant Feedback. We want to provide a remote build service

that behaves like the build is running on the developer’s local

workstations. This means the build output feedback should be

streamed back to the user when the build is running. It is unac-

ceptable to deliver the final console output only after the build

is completed.

In this paper, we describe the architecture of the build service

system used in Google that solves all of the above challenges. Then,

we describe more details about our build scheduling service. Fi-

nally, we show the scalability of our build service system and the

importance of the scheduling service. Specifically, our build service

system is able to run 15 million builds on average per day.

The paper makes the following contributions:

• It demonstrates the possibility to implement a build service sys-

tem that runs tens of millions of builds to support industry-scale

development.

• It presents the architecture of the build service system after years

of refinement in Google. Our experience could be useful for oth-

ers to build a scalable build service system.

• It discusses our build scheduling service and its improvement in

efficiency on the build service system.

2 BACKGROUND

This section describes the Bazel build tool [1], the Spanner data-

base [9] and the proportional–integral–derivative controller [16]

we use in our build service system.

2.1 Bazel

Bazel is an open-source build and test tool similar to Make [5],

Maven [7], and Gradle [6]. It uses a human-readable, high-level

build language. Bazel supports projects in multiple languages and

builds outputs for multiple platforms. Google uses a build tool built

on top of Bazel. For simplicity, we refer to Bazel in the rest of the

paper as the build tool in Google.

Bazel takes as input a set of targets that programmers declare in

build files. Figure 1 shows a Java sample build specification. Each

build specification contains a set of targets. Most targets are one

of two principal kinds, files and rules. A rule specifies the relation-

ship between inputs and outputs, and the actions to build the out-

puts. Actions are sets of system calls, e.g. shell scripts, that will be

CREATE TABLE BuildTable (

id STRING NOT NULL,

state State BLOB NOT NULL,

build Build BLOB NOT NULL,

priority Priority NOT NULL,

request_time TIMESTAMP

) PRIMARY KEY (id);

CREATE INDEX StatePriorityRequestTime

ON BuildTable(state, priority, request_time);

Figure 2: Spanner example schema

executed to complete the build. Rules can be of one of many dif-

ferent kinds or classes, which produce compiled executables and

libraries, test executables and other supported outputs. For exam-

ple, java_library is a rule to compile Java source files into libraries.

java_test is a rule to execute Java tests. java_binary is a rule to

create executable files for Java. Targets may have dependencies

and each target and its dependent targets form an acyclic depen-

dency graph. For example, the Java library target HelloWorld de-

pends on the Java library target Greeter. The Java library target

HelloWorldTest depends on HelloWorld target. The Java test target

AllTests depends on HelloWorldTest target and the test execution

requires GPU. The Java binary target HelloWorldMain depends on

target HelloWorld. When a programmer issues a command to build

a target, the build system first ensures that the required dependen-

cies of the target are built. Then, it builds the desired target from

its sources and dependencies.

A build includes an execution context, a build command, and

somemetadata. The execution context specifies theworkspace (with

or without unsubmitted code changes) in which to run Bazel. We

use execution context and workspace interchangeably in the rest

of the paper. A Bazel build command specifies the command name,

the flags and the target to run. For example, the command bazel run

--jvmopt="-Xms256m" :HelloWorld runs the :HelloWorld target with

the JVM startup heap size set to 256 MB. Note that run is the com-

mand name, --jvmopt="-Xms256m" is the build flag, and :HelloWorld

is the target. The metadata stores other relevant information of the

build, e.g. the build’s unique identifier or priority, etc. A majority

of our remote builds is one of the three kinds: (1) executing a de-

pendency graph query; (2) build the specified targets; and (3) build

and run the specified test targets.

2.2 Spanner

Spanner is a scalable, globally-distributed database [9]. At the

highest level of abstraction, it is a database that shards data across

many sets of Paxos [13] state machines in datacenters spread all

over the world. Replication is used for global availability and ge-

ographic locality; clients automatically failover between replicas.

Spanner automatically reshards data acrossmachines as the amount

of data or the number of servers changes, and it automatically mi-

grates data across machines (even across datacenters) to balance

load and in response to failures. Spanner is designed to scale up to

millions of machines across hundreds of datacenters and trillions

of database rows.

453



Scalable Build Service System with Smart Scheduling Service ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Figure 2 shows an example Spanner database schema that cre-

ates a BuildTable for storing the build to run. The id column stores

a universally unique identifier for each build. The state column

stores an enum that specifies the running state of the build. The

build column stores an object that specifies the build command,

flags and targets to run. The priority column stores an enum that

specifies the priority of the build. The request_time column stores

the request time of the build. The primary key of the BuildTable is

the id column, and it lets Spanner automatically index the BuildTable.

Spanner allows us to create secondary indexes for other columns.

Adding a secondary index on a column makes it more efficient to

look up data in that column. For example, Figure 2 shows a sec-

ondary index StatePriorityRequestTime on the BuildTable, which

allows us to quickly find all running builds and iterate over those

builds in priority order. For builds of the same priority, we order

them by their request time in chronological order. This enables an

efficient build scheduling algorithm based on build priority and re-

quest time.

2.3 Proportional Integral Derivative Controller

A proportional–integral–derivative (PID) controller [16] is a con-

trol loop mechanism employing feedback that is widely used in

industrial control systems and a variety of other applications re-

quiring continuously modulated control. A PID controller contin-

uously calculates an error value e(t) as the difference between a

desired set point (SP) and a measured process variable (PV), and

applies a correction based on proportional, integral, and derivative

terms (denoted P, I, and D respectively). The input to the process

is the output from the PID controller, and it is called manipulated

variable (MV).

The proportional, integral, and derivative terms are summed to

calculate the output of the PID controller,which is denoted byut(t)

and defined as follows:

u(t) = MV (t) = Kpe(t) + Ki

∫ t

0
e(τ )dτ + Kd

de(t)

dt

where Kp ≥ 0, Ki ≥ 0 and Kd ≥ 0 denote the coefficients for the

proportional, integral, and derivative terms, respectively. e(t) =

SP − PV (t) denotes the error. t denotes the present time. τ is the

variable of integration and it ranges from 0 to the present time t .

In a real implementation, the integral term is discretized, with

a sampling time delta ∆t , as

∫ tk

0
e(τ )dτ =

k∑
i=1

e(ti )∆t

and the derivative term is approximated as

de(tk )

dt
=

e(tk ) − e(tk−1)

∆t

The PID controller is designed to make PV smoothly approach

SP and finally equal to SP. In this paper, the build service uses the

PID controller to make scheduling decisions.

Figure 3: Build service architecture

3 BUILD SERVICE ARCHITECTURE

Figure 3 shows the architecture as microservices of the build ser-

vice system in Google. Each component talks to its connected com-

ponent via remote procedure calls (RPC). This allows the system to

be loosely coupled, scalable, and highly maintainable and testable.

Each arrow points from a component to another dependent com-

ponent. For example, the build scheduling service depends on the

Spanner database but not vice versa. In this section, we first briefly

describe a commonworkflow of running a build. Then, we describe

each component in the architecture.

3.1 Workflow

A typical workflow of a build includes the following steps:

• The client sends the build to the scheduling service.

• The scheduling service sends the build to the Bazel worker and

returns a build ID to the client.

• The client uses the returned build ID to query the status of the

build via the build event service.

• The worker starts a workspace with a Bazel process. The Bazel

process analyzes the build and computes the actual actions to

run on the executor cluster.

• The executor cluster runs the actual actions and returns the out-

put.

• The output is sent to the build event service and saved in the

storage service.

• The client listens to the build event service as if the build is exe-

cuting on the client’s local workstation.

3.2 Client

The client is provided with a set of APIs to interact with the build

service system. Table 1 shows the build APIs the client is able to

invoke via RPCs. The CreateBuild API allows the client to create

a build in the system. The build will be queued in the scheduling

service and executed some time in the future. The API returns a

unique build ID so that the client can query the status of the build

via the WatchBuild API. The GetBuildAPI allows the client to query

the build and its current state. The CancelBuild API cancels a pre-

viously created build, which frees up some system resources. The

WatchBuild API allows the client to receive the build output when

the build is running. All of GetBuild, CancelBuild and WatchBuild

take the build ID as input.
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Table 1: Build API

API Description

CreateBuild

Create a build, queuing it to be executed at

some point in the future. A unique ID is

returned to the client for querying the build.

GetBuild Get a build, including its current status.

CancelBuild

Cancel a previously created build. If the build

is done or in the process of cancelling, this has

no effect.

WatchBuild Return a stream of events for a build.

3.3 Scheduling Service

The build scheduling service implements the CreateBuild, GetBuild

and CancelBuild APIs. It uses a priority queue to hold all created

builds. All builds are ordered by their priority which is inferred

from the client that creates builds. For example, builds created by

humans for code submission may have higher priority than builds

created by an automation tool that collects code coverage. A build

is dequeued whenever a Bazel worker is available and there exist

enough idle executors to run the build. Higher priority builds are

strictly dequeued before lower priority builds. The scheduling ser-

vice generates a global unique ID for a build, and the build ID is

returned to the client.

The scheduling service updates the build state during the life-

cycle of a build. Table 2 shows all possible states of a build during

its lifecycle. A build can be in one of the three states, i.e. ENQUEUED,

IN_PROGRESS or FINISHED. When a build is in the priority queue, it is

in the ENQUEUED state.When a build is dequeued and running on the

Bazel worker, it is in the IN_PROGRESS state.When a build is finished

and the result is returned, it is in the FINISHED state. The schedul-

ing service publishes the BUILD_ENQUEUED, INVOCATION_STARTED and

INVOCATION_FINISHED events, respectively, to the build event ser-

vice whenever the build state is set, for the first time, to ENQUEUED,

IN_PROGRESS and FINISHED, respectively. These events which are

published when a build state is changed are referred to as lifecy-

cle events. Normally, a build moves from the ENQUEUED state to the

IN_PROGRESS state, and finally to the FINISHED state. But it is possi-

ble that the build is lost during the execution, e.g. the worker dies,

so in practice the build can move to the ENQUEUED state and then

move to the IN_PROGRESS state repetitively, and finally move to the

FINISHED state. Whenever a build is dequeued, the scheduling ser-

vice generates a unique invocation ID for the execution. The build

ID is unique during a build’s lifecycle but a build can have multi-

ple invocation IDs. The invocation ID can be used to query build

execution result from the output storage service.

3.4 Bazel Worker

The Bazel worker is a container with multiple workspaces, and

each workspace can run a single Bazel process. Each worker has

a limited number of workspaces and thus cannot run more builds

in parallel than the workspace capacity. The worker controls the

amount of resources, e.g. memory, network and CPU, assigned to

each workspace.

The worker sends a long running GetNextBuild RPC to the build

scheduling service and receives back the build information to start

the invocation. The GetNextBuild RPC is sent to the scheduling ser-

vice whenever a workspace becomes available. The selected work-

space then sets up the building environment and starts a Bazel pro-

cess to run the build. During the execution, the workspace periodi-

cally renews its lease on the build, i.e. it notifies the scheduling ser-

vice that the build is in progress. If the worker dies, e.g. hardware

maintenance, and the scheduling service does not receive the lease

renewal for a while, then the build will be requeued in the schedul-

ing service. If the workspace tries to renew the lease but the build

is not in the IN_PROGRESS state, e.g. build is requeued or cancelled,

then the worker immediately cancels the build to free up resources.

Once the build finishes, the workspace sends the build’s final result

via the FinishBuild RPC to the scheduling service which then sets

the build to the FINISHED state.

Bazel publishes build events to the build event service during

build execution. Some build events contain console output which

will be printed in the client’s terminal. Other build events contain

the verbose build logs and these events will be consumed by the

output storage service.

Bazel analyzes the build flags and targets to generate a set of

actions. Actions may depend on other actions, e.g. the output of

one action may be the input of another action. Thus, Bazel gener-

ates a directed acyclic action graph, where a node represents an

action and an arrow points the output of one action to the input

of another action. Bazel sends the actions to the executor cluster

in the topological order in parallel to minimize the execution time.

Internally, Bazel caches the output of each action by its input di-

gest and only sends the action to the executor cluster if Bazel does

not know the output of that action. The actual executions happen

on the executor cluster.

3.5 Executor Cluster

The executor cluster executes the actions Bazel sends. The cluster

has a global action cache, which can return the action output im-

mediately if the action is executed recently for some other builds.

The number of actions running on the executors is very large such

that over 99% of actions are cached on average. The executor clus-

ter contains a queue of actions waiting for execution until some

executor is free. The action queue length is intended to be small

because the scheduling service already has a build queue to hold

excessive builds when the executor cluster is full.

The executors have multiple hardware architectures. A major-

ity of the executors are x86 CPUs which are used by all builds. A

large set of builds uses Mac machines because Apple’s App Store

apps must be built on iOS devices. GPUs and TPUs are popular be-

cause they can speed up training machine learning models.We use

executor type to denote different executor architecture in the rest

of the paper.

In Google, each product area (PA) is only allowed to use a re-

stricted set of executors so that any PA will not use up all execu-

tors. For example, mobile app developers will not see slow builds

and be blocked by video website developers who use a large set
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Table 2: Build states and corresponding events

State Event Description

ENQUEUED BUILD_ENQUEUED The build is in the priority queue waiting to be dequeued.

IN_PROGRESS INVOCATION_STARTED The build is dequeued to a worker and running.

FINISHED INVOCATION_FINISHED The build is finished and the build result is returned.

of executors. However, if executors in a PA is underutilized, then

another PA can borrow a limited subset of executors from the PA.

Not all actions are equally expensive. For example, some action

may require more CPU/memory to run compared to another ac-

tion. An action that uses one executor with 5GB memory is more

expensive than another action that uses one executor with 2GB

memory. In the rest of the paper, we use an executor service unit

(ESU) to unify the expense of both memory and CPU. One ESU

is equal to 2.5GB of memory or 1 executor. The executor cluster

keeps track of the type and amount of ESU each build uses and

passes that information to another build service component, i.e.

quota governor.

3.6 Quota Governor

In order to govern the quota usage, each PA is assigned to a limited

amount of ESU quota. The intention is to avoid the case where

builds from a single PA occupy the entire executor cluster while

builds from other PAs cannot be started due to lack of resources.

We use PA and quota group interchangeably in the rest of the paper.

The quota governor computes the ESU each quota group is allowed

to use, and the scheduling service uses that to decide the number

of builds to dequeue for each quota group.

Section 2.3 introduces the PID controller. In the quota gover-

nor, PV maps to the current executor occupancy, i.e. the amount

of ESU the executor cluster is using, per quota group and executor

type. SP maps to the desired executor occupancy, i.e. the amount

of ESU allowed to use, per quota group and executor type. Each

quota group is allowed to borrow unused executor quota from all

other quota groups, so the SP of each quota group keeps changing

as the utilization ratio of the executor cluster changes. MVmaps to

the target executor occupancy, i.e. the amount of ESU we want to

fill up by running more builds. In practice, the PID controller com-

putes the MV and the scheduling service uses MV to decide how

many more builds should be dequeued.When PV is larger than SP

and MV is negative, the scheduling service simply stops dequeu-

ing more builds and waits until some resources are freed. When

PV is smaller than SP again, the scheduling service starts dequeu-

ing more builds. This strategy makes PV smoothly approaching SP

and avoids overshooting.

3.7 Build Event Service

The build event service is designed to facilitate build progress re-

porting. It asynchronously sends build-related events from remote

build components (called event publishers) to any number of build

watchers. Examples of build events include, but are not limited

to, lifecycle events from the scheduling service or console output

events from Bazel. A build watcher can watch a build while it’s

ongoing, or for up to a given period of time after a build has been

created. A build watcher can pause the watch session at an arbi-

trary position, and then resume the paused session.

Lifecycle events are build level events because they are pub-

lished when the build state is changed. Bazel events are invocation

level events because a build can be lost for many reasons and exe-

cuted multiple times. No Bazel event can be sent to a build watcher

unless both BUILD_ENQUEUED and INVOCATION_STARTED events have al-

ready been sent. Likewise, the INVOCATION_FINISHED event cannot

be sent to a build watcher unless all its Bazel events have been ei-

ther completely sent, or considered as expired, i.e. the publisher of

this stream probably crashed.

Internally, the build event service uses Spanner to store build

events. The scheduling service publishes lifecycle events and Bazel

publishes Bazel events. Events are published in the order of event

occurrence on the client side. The order of lifecycle and Bazel events

are checked on the server side. The build event service allows users

to query build events via the WatchBuild API, and it provides both

lifecycle and Bazel events in chronological order at real time.

The build event service allows the build watchers to specify

event filters which causes only relevant events to be sent to the

build watcher. This is particularly useful because the size of all

of the events for a build could be huge, e.g. up to hundreds MBs

depending on the build, and clients often do not need all events.

For example, a command line tool only needs to print the console

output to the users. Showing other outputs will likely overwhelm

developers. On the other hand, the storage service needs to save

all build outputs to facilitate debugging, so it watches all events.

3.8 Build Output Storage Service

The build output storage service is a centralized repository for

build and test results at the invocation level. It also stores test-

related metrics, such as running time and failures. The storage ser-

vice watches all remote builds, aggregates the build results and dis-

plays them to human users. The service keeps the build output for

a longer period of time compared to the build event service, which

allows users to check the build output of an old build or analyze

the build status history pattern. Since the total size of the build out-

put per day is very large, the service does not provide a permanent

storage solution. The service provides a UI where users can query

their build execution results by providing the invocation IDs.

4 BUILD SCHEDULING SERVICE

The clients enqueue builds to the scheduling service and the sched-

uling service dequeues them whenever some workers and execu-

tors are available. The worker keeps pulling builds whenever some

workspaces are idle, so the scheduling service only needs to decide

if it should send the build to the worker based on the executor avail-

ability. The scheduling service dequeues enough builds that fill up

the target executor occupancy provided by the quota governor.
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In this section, we describe the build scheduling service in more

detail. We first describe how to determine some critical properties

of the build. Then, we describe why and how the Spanner data-

base is used. Finally, we describe the build enqueuing service, the

dequeuing service, and the expiring service.

4.1 Critical Build Properties

The build scheduling service conceptually partitions builds into

different subgroups based on some build properties. Some build

properties are used to sort builds in the priority queue. Those criti-

cal properties include build state, quota group, executor types and

build priority. The critical build properties do not change during

the lifecycle of the build.

The build state is described in Section 3.3 and only ENQUEUED

builds are considered for dequeuing.

The quota group is determined by the quota governor, and its

value is set to the PA of the actual user that creates the build. The

user could be human or an automation tool.

The executor types of a build (before actually running the build)

are computed from the build flags (e.g. --ios indicating Mac build),

the tags that specifies executor type in any of the build targets (e.g.

requires-gpu tag in Figure 1), and the executor type usage history

of the build target rules (e.g. since swift_binary targets use a lot of

Mac executors in the past, so any build with swift_binary target

would use Mac executors). Note that all builds use x86 executors

but they can use more executor types.

The build priority is derived from the tool used to create the

build. Table 3 shows all possible build priorities and some exam-

ples. EMERGENCY builds take the highest priority and are dequeued

immediately. INTERACTIVE builds are waited by human users and

should be dequeued in few a seconds. AUTOMATED builds are impor-

tant but no human user is waiting at the moment, so these should

be dequeued in a couple of seconds tominutes. BATCH builds are not

important and can be delayed for a long time. In practice, EMERGENCY

builds are rare. Most INTERACTIVE and AUTOMATED builds are often

created and dequeued at peak hours (9am-5pm). BATCH builds are

dequeued and executed outside of peak hours.

4.2 Spanner Database

The build scheduling service uses the Spanner database to keep

track of any build state change. The reason to use the Spanner data-

base is to avoid data loss or invalid system states caused by server

shutdown. In production,we runmultiple scheduling servers to en-

queue and dequeue builds, and it’s not rare that some servers are

shut down by the server manager for maintenance [15]. When the

server is back up, it can continue enqueue or dequeue builds with-

out worrying about losing builds or handling invalid build state

caused by the last shutdown. Thus, the Spanner database allows

us to build stateless servers.

We use a Spanner secondary index (Section 2.2) to create a queue

of builds ordered by build state, quota group, build priority and

request time. Only ENQUEUED builds are considered for dequeuing.

Conceptually, the scheduling service keeps a queue of enqueued

builds per quota group, and the queue is ordered by the build pri-

ority from highest to lowest. Within the same priority band, the

builds are sorted in chronological order of their requested time.

When a build is first enqueued in the database or its state is changed

by a transaction, Spanner automatically reindexes the build to the

correct position at the transaction commit time.

4.3 Build Enqueuing Service

The enqueuing service provides the CreateBuild, GetBuild and

CancelBuildAPIs.We runmany enqueuing service jobs across mul-

tiple geographical locations to (1) handle a large number of re-

quests/queries per second (QPS); (2) avoid multiple machine fail-

ures in a single machine cluster; and (3) route build requests to the

nearest geographical location to reduce network latencies.

The CreateBuild API is the entry point to the build service sys-

tem. After the client calls CreateBuild with the build to run, the

enqueuing service first generates a globally unique build ID using

type 4 UUID [14]. Then, the service finds all build properties, e.g.

quota group and executor types. Next, the enqueuing service uses

a machine learning model to predict the estimated ESU of the build.

This helps the dequeuing service to know how expensive the build

is and decide if there is enough resource to run the build at the mo-

ment. Finally, the enqueuing service persists all build information

to the database and marks the build as ENQUEUED, and returns the

unique build ID to the client.

Predicting the estimated ESU occupancy of a build is important

to determine if the build can be dequeued. If the sum of the esti-

mated occupancy of all in-progress builds is less than the target

occupancy given by the quota governor, then the dequeuing ser-

vice would dequeue some builds to fill up the gap. Otherwise, the

dequeuing service wouldwait until some builds are finished before

dequeuing new builds. This strategy ensures that the executor clus-

ter is busy running actions if there are builds waiting in the queue.

We use a linear regression model in TensorFlow [8] to predict

the ESU each build uses. Each executor type has a separate model.

We train our models using the data in the past 17 days. The data is

split into 95% training and 5% testing. The labels are the actual ESU

usage of finished builds, which is stored to the disk by the executor

cluster. The training pipeline runs continuously and deploys the

new models every day. This helps the system to capture the most

recent data distribution, and be able to handle buildswith new flags

or targets. The feature space includes the followings:

• Build command name and flags. Build command name includes

build and test, etc. For example, the build command compiles,

links and creates code libraries. The test command runs the

tests. Build flags include --copt and --android_sdk, etc. For ex-

ample, the --copt flag specifies the options passed to the C com-

piler. The --android_sdk flag specifies the Android SDK and li-

brary used to build Android apps. We treat build flag features as

categorical features and each feature can have multiple values.

Flags can have out of vocabulary (OOV) values as well. The intu-

ition is that the build flags can affect the actions Bazel generates

and the ESU used by the build.

• Build targets and packages. The build target feature is the full

path to the target, e.g. path/to/package:target. Each target has

a unique path which is the path to the package that contains the

build specification followed by the actual target name declared

in the spec. The build package feature is simply the target prefix

without the target name. Targets and packages are multivalent
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Table 3: Build priorities

Priority Description Example

EMERGENCY
The build is critical and should be executed

immediately.

A build that is required for an emergency production

bug fix.

INTERACTIVE
The build is important and some human user is

waiting for the build.
A presubmit build that blocks code submission.

AUTOMATED
The build is important but no human user is waiting

for the build.

A postsubmit build that checks if all tests pass at a

given commit.

BATCH
The build is not important and whether it is executed

or not blocks nothing.

A nightly build that computes code coverage for some

submitted code.

features which can have multiple values for each build. More-

over, we use the target count and package count as numeric fea-

tures. The intuition is that some targets are significantly more

expensive than others, and some packages may contain more ex-

pensive targets. Builds with more targets or packages are likely

to be more expensive.

• Build properties like quota group and build priority. We found

that some PAs may have different ESU occupancy patterns com-

pared to other PAs. For example, the machine learning PA often

sends builds that require more GPU/TPU ESUs than other PAs.

Build priority is also useful to differentiate build occupancy pat-

terns. BATCH builds typically occupy more ESUs than builds of

other priorities, because tools that use BATCH priority, e.g. cover-

age analysis tools, often send more expensive builds.

We use an off-the-shelf automated blackbox optimization tool

similar to AutoML [12] to search for a set of features from the en-

tire feature space that gives the lowest average loss. The selected

feature set also includes synthetic feature crosses [4] of up to 6 ba-

sic features per cross. For example, one of the feature crosses we

use is the combination of command name, iOS sdk version, XCode

version and package, which turns out to be a useful feature for

predicting Mac ESUs a build may use.

4.4 Build Dequeuing Service

Conceptually, each quota group has a priority queue of builds. The

dequeuing service selects the queue using the weighted random

selection. Since x86 executors are used a lot more often than other

types of executors, each quota group weight is proportional to the

x86 ESUs capacity of each quota group. All quota group weights

sum up to 1. This means that builds from the PA with more x86

ESU quota are more likely to be attempted for dequeuing.

Once the build queue of a given quota group is selected, the

dequeuing service reads a limited number of builds at the head

of the queue. The reason to not read the entire queue of builds is

that the total number of builds in a queue could be very large and

iterating over all builds in the queue would delay dequeuing builds

of other quota groups. Note that if we keep dequeuing the builds

from the head of the queue, all builds in the queue will eventually

be dequeued.

Given a quota group, algorithm 1 illustrates how the dequeu-

ing service decides which builds can be dequeued. The algorithm

takes as input a list of builds from the head of the queue buildsToD-

equeue, the target occupancy for each executor type targetOccu-

pancyByType, the total estimated occupancy of in-progress builds

Algorithm 1: Dequeuing algorithm

Input: List of builds buildsToDequeue; Target occupancy

targetOccupancyByType; Total estimated occupancy of

in-progress builds inProgressOccupancyByType.

Output: Dequeueable builds.

1 dequeueableBuilds = []

2 reservedOccupancyByType = defaultdict(int) // default value is 0

3 foreach build ∈ buildsToDequeue do

4 isThrottled = False

5 foreach type ∈ getExecutorTypes(build) do

6 targetOccupancy = targetOccupancies[type]

7 inProgressOccupancy = inProgressOccupancyByType[type]

8 reservedOccupancy = reservedOccupancyByType[type]

9 remainingOccupancy = targetOccupancy -

inProgressOccupancy - reservedOccupancy

10 buildOccupancy = getEstimatedOccupancy(build, type)

11 if remainingOccupancy < buildOccupancy then

12 isThrottled = True

13 reservedOccupancyByType[type] += buildOccupancy

14 if not isThrottled then

15 dequeueableBuilds.append(build)

16 return dequeueableBuilds

for each executor type inProgressOccupancyByType. The output is

the dequeueable builds dequeueableBuilds. The algorithm first sets

dequeueableBuilds to an empty list and sets reservedOccupancyBy-

Type to an empty map with a default value of 0. reservedOccupan-

cyByType keeps the accumulated estimated occupancy reserved so

far for each executor type. For each build in buildsToDequeue, we

get all executor types of the builds. For each executor type, we get

the corresponding target occupancy, total in-progress build occu-

pancy, reserved occupancy so far, and compute the remaining occu-

pancy to fill up. Then, we get the estimated occupancy of the build

for the executor type. The estimated occupancy comes from the

machine learning model in the enqueuing service. If the remain-

ing occupancy is less than the estimated occupancy of the build,

then the build is throttled on that executor type. Next, we reserve

the estimated occupancy of the build when considering the next

build. If the build is not throttled on any executor type, then it is

considered as dequeueable. Finally, we return dequeueable builds.

The main idea of Algorithm 1 is that the available ESUs are re-

served by the previously iterated builds even if they cannot be de-

queued. This avoids the problem when an expensive high priority
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build is always throttled and cheaper low priority builds that ap-

pear after the high priority build are always dequeued instead.

Once the service finds all dequeueable builds, it needs to choose

an appropriateworkspace on a Bazel worker, or create one if neces-

sary. A well-chosen workspace can increase the build speed by an

order of magnitude by reusing the various cached results from the

previous execution. The total number of workspaces of all Bazel

workers is very large so it is highly likely that we can find a work-

space that previously executed a very similar build, thus reducing

the amount of work needed to execute the current build. We have

observed that builds that execute the same targets as a previous

build are effectively no-ops using this technique.

The dequeuing service has two kinds of workspace selection

algorithms as follows:

• The first algorithm computes a hash of the relevant build infor-

mation and then compares it with the hash of the previously

running build in each workspace. The algorithm dequeues the

build to the workspace with a matching hash. The build hash is

computed from (1) the code repository branch name at which

the build is initiated; (2) the build flags and targets, where they

can be in different order but still result in the same hash; and (3)

the Bazel version required to run the build. It is worth mention-

ing that the build hash does not depend on the Bazel command

name or the base revision of the change. When the service de-

queues a build, it sends the build hash to the workspace. The

workspace keeps the hash to be able to compare it with the hash

of the next build. The intuition is that the target dependency

graph of the new build is similar to that of the old build if both

builds share the same branch, flags and targets. The reason to

include the Bazel version in the hash is to avoid restarting the

Bazel process due to version differences.

• The second algorithm computes a set of hashes based on the

build’s flags and target prefixes. For a build command bazel build

--flag a/b:t1 a/c:t2, the algorithm computes a set of hashes

for each target. For target a/b:t1, the hashes are hash("--flag",

"a/b:t1") and hash("--flag", "a/b"). For target a/c:t2, the hashes

are hash("--flag", "a/c:t2") and hash("--flag", "a/c"). Then,

the algorithm checks if the hashes of each target prefix ever ap-

pear in the target prefix hashes in any workspace. If each set of

target prefix hashes overlaps with the set of target prefix hashes

in the workspace, then the workspace is selected if the Bazel ver-

sion matches as well. Otherwise, the workspace is not selected.

Once a workspace is selected for dequeuing the build, then the

dequeuing service unions the sets of hashes of all target prefixes

and passes the resulting set of hashes to the workspace. The

workspace keeps the set of target prefix hashes for comparison

when participating in the next round selection. This method is

effective because of the overlap in dependencies of targets that

share common prefixes.

The dequeuing service uses the first algorithm to find a work-

space, and falls back to the second algorithm if the first algorithm

cannot find a match. If the second algorithm cannot find a work-

space as well, then the service creates a new workspace to run the

build. If the new workspace makes the worker exceed its capacity,

then an unused workspace will be shut down.

It is critical that the Bazel process be kept running for as long

as possible, because most caches are lost when the process is shut

down. The Bazel worker runs a background processwhich continu-

ously monitors the memory usage on the worker, and shuts down

Bazel processes only when the memory usage on the worker ex-

ceeds a certain threshold.

After a build is finished, the worker notifies the scheduling ser-

vice about the final build status, e.g. succeeded, failed, canceled,

etc. Then, the scheduling service sets the build state to FINISHED,

which is the end of the build lifecycle.

4.5 Build Expiring Service

Some low priority builds may stay in the queue for a long time.

However, if a build is queued for too long, then the result might

be obsolete and no longer valid. The build expiring service expires

those builds which stay in the queue for more than a given time

period, and sets the build state to FINISHED.

Some builds are very expensive and may take a long time to run.

We do not want to let a build to run forever, so the build expiring

service expires the build invocation if it runs for more than a few

hours and sets the build state to FINISHED. Often these long run-

ning builds are problematic, and requires restructuring the build

specification or splitting the build into multiple smaller builds.

Section 3.4mentions that each Bazelworker periodically renews

the lease for the build. This makes sure that the scheduling service

knows the build is running normally. If for some reason the build

lease is not renewed, the build expiring service expires the lease

and sets the build state to ENQUEUED again. This allows other work-

ers to get and run the build.

5 EXPERIENCE

In this section, we first describe the production setup of the build

service system. Then, we describe the scalability of the system. Fi-

nally, we describe more details about the usefulness of our occu-

pancy models and workspace selection algorithm.

5.1 Production Setup

To scale up the build service system, each component is deployed

on multiple servers and those servers are widely spread across the

world. The load balancer then routes client requests to the nearest

group of servers and evenly distributes the traffic to each server.

Google has many datacenters and each data center has many

machine clusters. A metro is one or more datacenters that share

the same common metropolitan network infrastructure, routing

policy, and other associated network resources. Round trip time

between any locations within a metro should not exceed few mil-

liseconds. The core components of the build service system are lo-

cated in a way tominimize the network latency of the build service.

Some example configurations are listed below:

• The dequeuing service reads and writes the Spanner database

a lot. So the dequeuing servers reside in the same metro as our

Spanner database to maximize the dequeuing speed.

• The Bazel process waits until all build events are published to

the build event service before finishing the build. So the build

event servers reside in the same metro as the Bazel workers to

minimize event publishing latency.
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Table 4: Service API QPS

Service Avg Min Median Max

CreateBuild 102-253 0-173 89-244 213-833

GetBuild 526-4325 0-529 308-2712 2276-39466

CancelBuild 0-137 0-1 1-3 0-2841

GetNextBuild 94-223 0-166 89-220 177-529

FinishBuild 93-220 0-172 87-220 169-411

WatchBuild 620-3600 0-1757 735-3926 1165-6331

• The Bazel process interacts with the executor cluster a lot by

sending actions and receiving results. So the Bazel workers re-

side in the same metro as the executor cluster to minimize the

accumulative network latencies.

The enqueuing server does not need to be in the same metro as

the dequeuing server because both services do not directly inter-

act with each other via RPC. Instead, they share the same Spanner

database.

The output storage service does not need to reside in the same

metro as the build event service, because the storage service does

not block the build execution. Moreover, it is acceptable for devel-

opers to wait a couple of more seconds after the build is finished

to see the build output, thus the network latency is not critical.

5.2 Build Service System Scalability

The entire build service system runsmore than 15millions of builds

on average and up to 25 millions of builds per day. We have not

load tested the entire build service system, but we believe that it

can handle millions of more builds. The build service system sup-

ports more than 50,000 developers’ daily activities in Google.

Table 4 shows the average, minimum, median and maximum of

queries per second (QPS), per service API, over the last 24 hourwin-

dow between 2019/10/01 and 2019/12/31. The average CreateBuild

QPS over the last 24 hours ranges from 102 to 253. On 2019/10/20

Sun at around 3:00am, the CreateBuild QPS reaches the minimum

of 102. On 2019/11/26 Tue at around 4:30pm, the CreateBuild QPS

reaches the maximum of 253. Typically, all service APIs reach the

minimum value on weekends outside of peak hours and maximum

value on weekdays within peak hours. The average GetBuild QPS

ranges from 526 to 4325. GetBuild has a larger QPS compared to

CreateBuild because it is often invoked multiple times to query

the build status during the build lifecycle. The average CancelBuild

QPS ranges from 0 to 137. CancelBuild is not common in practice,

but sometimes it is used to cancel problematic builds, e.g. builds

that are too big and cause out of memory errors in servers. The av-

erage GetNextBuildQPS ranges from 94 to 223. The average FinishBuild

QPS ranges from93 to 220. TheQPS of GetNextBuild and FinishBuild

are comparable to CreateBuild because each build often corresponds

to a single invocation for each of the CreateBuild, GetNextBuild

and FinishBuild APIs. The average WatchBuild QPS ranges from

620 to 3600. WatchBuild has a larger QPS compared to CreateBuild

because multiple clients can watch the same build. A single client

may also watch the same build multiple times because WatchBuild

is a long running API and has a higher RPC failure rate. In sum-

mary, Table 4 shows that the build service system is able to handle

a large amount of throughput.

Table 5: Service API latency in milliseconds

Service Avg Min Median Max

CreateBuild 111-3k 86-146 114-191 124-48k

GetBuild 15-38 4-16 15-26 28-608

CancelBuild 108-432 26-145 91-208 170-41k

GetNextBuild 106k-235k 28k-102k 98k-166k 199k-2064k

FinishBuild 184-689 131-250 177-297 213-71k

WatchBuild 24k-83k 15k-48k 24k-78k 44k-200k

Table 6: Build count, size and time spent for each priority

Metric\Priority EMERG INTER AUTO BATCH

Build Count (%) 0.4 40.1 46.0 13.6

Build Size (KB) 1.5 5.8 22.5 18.4

Target Count 10 22 143 201

Build Queuing 2.4 31.0 282.8 2561.8

Worker Process 4.1 3.3 4.1 3.8

Action Queuing 0.1 0.5 2.3 5.2

Execution 127.6 89.8 133.4 176.1

Table 5 shows the average, minimum, median and maximum of

latency in milliseconds, per service API, over the last 24 hour win-

dow between 2019/10/01 and 2019/12/31. The average CreateBuild

latency ranges from 111ms to 3s. Typically, CreateBuild is designed

to have a small latency for better user experience. The average

GetBuild latency ranges from 15ms to 38ms. The GetBuild latency

is small because it only involves reading the build information

from Spanner and returning it to the user. The average CancelBuild

latency ranges from 108ms to 432ms. The average GetNextBuild la-

tency ranges from 106s to 235s, which is significantly longer than

other API latencies as expected. The average FinishBuild latency

ranges from 184ms to 689ms. The latencies of CreateBuild,

CancelBuild and FinishBuild are similar, because they involve read-

modify-write [11] Spanner transactions. The average WatchBuild

latency ranges from 24s to 83s. The WatchBuild API needs to send

back a long sequence of events to the client, so its latency is larger.

All build service APIs offer high availability, i.e. the successful

rate of theAPIs, to the clients. CreateBuild, GetBuild and WatchBuild

offer 99.9% availability. CancelBuild, GetNextBuild and FinishBuild

offer 99.5% availability.

It is worth to mention that the build output storage service has

30,000 to 60,000 daily active human users who access their build

output via web browsers.

Table 6 shows the average build count in percentages, the aver-

age size in KB, and average time in seconds spent at each phase.

The data is broken down by build priority and collected between

2019/10/01 and 2019/12/31. The table shows that EMERGENCY builds

only account for 0.4% of the total builds. INTERACTIVE and AUTOMATED

builds are comparable and they account for 40.1% and 46.0% of

the builds, respectively. BATCH builds account for 13.6% of the to-

tal builds. The build size reflects the number of flags, targets and

size of the metadata. Larger build sizes typically indicate more ex-

pensive builds (in terms of occupied ESU). However, builds with a

small number of expensive targets could be more expensive than

builds with a large number of cheap targets. EMERGENCY builds are

smaller in size and they are of 1.5KB on average. INTERACTIVE builds

460



ISSTA ’20, July 18–22, 2020, Virtual Event, USA K. Wang, G. Tener, V. Gullapalli, X. Huang, A. Gad, and D. Rall

are larger in size and they are of 5.8KB on average. AUTOMATED and

BATCH builds are comparable and they are of 22.5KB and 18.4KB on

average, respectively. EMERGENCY, INTERACTIVE, AUTOMATED and BATCH

priority builds have on average 10, 22, 143 and 201 targets, respec-

tively. EMERGENCY builds are the highest priority builds so they only

spend 2.4s on average in the scheduling service. INTERACTIVE builds

are the second highest priority builds and they spend 31.0s on av-

erage in the scheduling service. AUTOMATED and BATCH builds are

lower priority builds and they spend 282.8s and 2561.8s on aver-

age in the scheduling service. It takes roughly the same amount

of time (3.3s to 4.1s) for the Bazel workers to prepare the envi-

ronment before starting the build execution across all build priori-

ties. Similar to the build queuing time, the action queuing time on

the executor cluster is smaller for higher priority builds. The aver-

age action queuing time for EMERGENCY, INTERACTIVE, AUTOMATED and

BATCH builds are 0.1s, 0.5s, 2.3s and 5.2s, respectively. The execution

time spent on the executor cluster for all builds are comparable and

roughly proportional to the build size. The average execution time

for EMERGENCY, INTERACTIVE, AUTOMATED and BATCH builds are 127.6s,

89.8s, 133.4s and 176.1s. The average execution time of EMERGENCY

builds is larger because they are biased by a small number of long

running builds that execute tests hundreds of times. INTERACTIVE

builds are often human triggered builds, and they are typically

smaller in size and faster to execute because developers often only

run a small set of targets affected by their change. AUTOMATED and

BATCH builds are often tool triggered builds and those builds are

larger in size and slower to execute.

The executor action cache hit rate is often around 99% which

speeds up the build execution a lot. Without the action cache, the

build service systemwould not be able to supportmillions of builds.

5.3 Build Scheduling Service Performance

We have discussed some QPS and latency metrics for the schedul-

ing service (Section 5.2). In this section, we mainly discuss the use-

fulness of the occupancy model (Section 4.3) and the workspace

selection algorithm (Section 4.4).

The error of an occupancy model is defined as the difference

between the actual ESU and the estimated ESU. The mean square

error and the average absolute error of the x86 occupancy model is

312.5 and 5.7, respectively. The mean square error and the average

absolute error of the Mac occupancy model is 522.1 and 8.1, respec-

tively. There are more builds that require x86 executors than Mac

executors, so the x86 occupancy model has more training data and

is more accurate than the Mac occupancy model. Other occupancy

models have a lower accuracy compared to the x86 and Mac occu-

pancy models, because only a small fraction of builds require those

executor types and those occupancy models have even less train-

ing data. Moreover, the executor action cache also makes it hard

for the occupancy model to be accurate. Because the same build

can use some ESU when there is no cache hit, or 0 ESU when all

generated actions hit the cache.

In practice, we find that the occupancy model is useful in mak-

ing the target executor occupancy more stable and smooth, which

helps keeping the executor cluster fully occupied. If we use a de-

fault occupancy model which always returns 1 ESU for each ex-

ecutor type per build, the scheduling service would overschedule

builds which causes some expensive low priority builds to run and

those builds would prevent high priority builds from executing.

The workspace selection algorithm only affects builds that can

reuse Bazel’s target dependency or action cache. We collect data

from 21 days before and after this feature is enabled, and find that

the algorithm is able to reduce the average build execution time

from 64.1s to 55.4s, which is a 13.6% improvement. Note that the

data is not collected between 2019/10/01 and 2019/12/31, and the

data excludes builds that are configured to clean the Bazel cache

before running.

6 RELATED WORK

CloudBuild [10] is the closest related work to our build service

system. It is Microsoft’s distributed and caching build service. The

main differences are listed below:

• A build in Microsoft contains coarse-grained projects. In Google,

a build contains fine-grained targets.

• CloudBuild’s distributed cache is similar to the global cache in

the executor cluster described in Section 3.5. Microsoft hasmany

codebases and these codebases have fewer shared dependencies.

In comparison, Google has a monolithic codebase which results

in higher chances in sharing build targets among builds. So Cloud-

Build’s cache hit rate is lower than our executor cache hit rate.

• CloudBuild executes around 20k builds per day and is used by

around 4000 developers. In comparison, our build service system

executes more than 15 million builds on average per day and is

used by more than 50,000 developers.

Another related work is distcc [3], which is a distributed C/C++

compiler publicly available onGitHub.The unit ofwork is a prepro-

cessed source code file that is sent over the network and compiled

remotely. In comparison, our build service system supports many

languages and test executions.

Modern build systems like Maven [7], Gradle [6], Buck [2] are

not distributed and do not scale to the problem we face in Google.

Both Gradle and Buck support local cache which is similar to Bazel

in our build service system.

As far as we know, our build service system handles the largest

number of builds daily among all build systems developed in other

companies. We also introduce the first build scheduling algorithm

that uses machine learning models and PID controllers. We believe

our work can be beneficial for designing more scalable build ser-

vice systems.

7 CONCLUSION

In this work we presented what we believe is the most scalable

build service system in theworld. The system has evolved formany

years and is refined with many optimizations. We discuss each

component in the build service system as well as the build APIs.

More specifically, we discuss the build scheduling service and al-

gorithms to dequeue builds.We show that our build service system

handles more than 15million builds on average daily.We also show

the usefulness of our occupancy models and workspace selection

algorithm in the build scheduling service. We believe that the ar-

chitecture and algorithms described in this paper are useful and

can help in designing new scalable build service systems.
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