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ABSTRACT
Declarative models help improve the reliability of software systems:
models can be used to convey requirements, analyze system designs
and verify implementation properties. Alloy is a commonly used
modeling language. A key strength of Alloy is the Analyzer, Alloy’s
integrated development environment (IDE), which allows users
to write and execute models by leveraging a fully automatic SAT
based analysis engine. Unfortunately, writing correct constraints of
complex properties is difficult.To help users identify fault locations,
AlloyFL is a fault localization technique that takes as input a faulty
Alloy model and a fault-revealing test suite. As output, AlloyFL
returns a ranked list of locations from most to least suspicious.
This paper describes our Java implementation of AlloyFL as an
extension to the Analyzer. Our experimental results show AlloyFL
is capable of detecting the location of real world faults and works
in the presence of multiple faulty locations. The demo video for
AlloyFL can be found at https://youtu.be/ZwgP58Nsbx8.
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1 INTRODUCTION
In today’s society, we are becoming increasingly dependent on
software systems. At the same time, we also constantly witness
the negative impacts of buggy software. One way to help develop
better software systems is to leverage software models, which can
have numerous benefits throughout the software development life-
cycle. Before systems are built, models can be used to automatically
ensure design-level properties are satisfied [4, 7, 19]. After systems
are built, models can be used to automatically test and verify imple-
mentations [11]. Alloy is a declarative, first-order logic modeling
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language that has been used to verify system designs in multiple
domains, including security [8, 13], networking [15], and UML anal-
ysis [9, 10]. A key strength of Alloy is the Analyzer, an integrated
development environment (IDE) for Alloy. The Analyzer allows
users to write Alloy models and execute commands to exercise the
model’s constraints. To execute commands, the Analyzer performs
a fully automated analysis using off the shelf SAT solvers to gener-
ate assignments to the sets and relations of the models such that a
user specified property is satisfied.

The many benefits of software models can only be achieved if
the model itself is correct. Fortunately, prior work has introduced
AUnit, a unit testing framework for Alloy, which is designed to give
users a systematic method to check if their model matches their
expectations [18]. However, if an AUnit test suite reveals a model to
be buggy, the user still needs to be able to localize and fix the faulty
portion of the model. Alloy’s expressive operators (e.g. transitive
closure, quantified formulas) allow users to write succinct formu-
lations of complex properties. Unfortunately, this same succinct
representation makes localizing faulty Alloy constraints difficult.
In the base version of the Analyzer, the only avenue users have to
localize faults is the unsat core highlighting. However, Daniel Jack-
son, the inventor of Alloy, has acknowledged that the unsat core is
insufficient [5] and the unsat core only helps when a constraint is
unexpectedly unsatisfiable. To address this, our prior work devel-
oped AlloyFL, a fault localization technique for Alloy which adapts
spectrum-based fault localization (SBFL) and mutation-based fault
localization (MBFL) techniques designed for imperative languages
to Alloy’s declarative execution environment [21].

This paper describes our efforts to create a Java implementation
of AlloyFL as an extension to the Analyzer’s standalone executable
jar (https://alloyfl.github.io). By extending the Analyzer, we are able
to give users access to AlloyFL within the existing development
workflow for Alloy models. Specifically, given a faulty model and
a fault revealing AUnit test suite, AlloyFL returns a ranked list of
suspicious abstract syntax tree (AST) node locations in the faulty
model. AlloyFL conveys this information to the user by both up-
dating the logging interface of the Analyzer to display the ranked
list and highlighting locations in the text editor based on their
suspiciousness score. Our implementation supports AlloyFLℎ𝑦 , a
hybrid fault localization technique which combines AlloyFL𝑐𝑜 , a
SBFL technique and AlloyFL𝑚𝑢 , a MBFL technique to utilize their
individual strengths for detecting different types of faults in Alloy’s
declarative execution environment. To combine the techniques,
AlloyFLℎ𝑦 computes a score for each AST node using a formula
that aggregates AlloyFL𝑐𝑜 ’s score and AlloyFL𝑚𝑢 ’s score.

2 BACKGROUND
In this section, we present a faulty Alloy model to introduce key
concepts of Alloy, AUnit and AlloyFL.
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1. sig List { header: lone Node }
2. sig Node { link: lone Node }
3. pred Acyclic(l: List) {
4. all n: Node | n in l.header.*link => n !in n.*link }
5. run Acyclic

Figure 1: Acyclic Singly-linked List

1. val ValidListSizeTwo {
2. some disj List0: List { some disj Node0, Node1: Node {
3. List = List0 and Node = Node0 + Node1
4. header = List0->Node1 and link = Node1->Node0
5. @cmd: Acyclic[List0] } } }
6. @Test: run ValidListSizeTwo expect 1

Figure 2: Example AUnit Test for List

Figure 1 displays a faulty model of a singly-linked list. Signature
paragraphs introduce named sets of atoms and their relations into
the model (lines 1 - 2). Line 1 introduces List as named set and
line 2 introduces Node as a named set. The relation header declares
that each List atom points to zero or one header node. Similarly,
the relation link conveys that each Node atom points to zero or one
subsequent node. Predicate paragraphs introduce named first-order
logic formulas that can be invoked elsewhere (lines 3 - 4). The
predicate Acyclic uses universal quantification (all) and reflexive
transitive closure (*) to incorrectly express the concept: “for all
nodes, if a node (n) is in the list (l) then that node n is not reachable
from itself.” The fault is in red and reflects the incorrect use of
reflexive transitive closure instead of transitive closure (∧). Line 5
depicts an Alloy command that executes Acyclic. During execution,
the Analyzer will search for instances, which are assignments to
the sets and relations of the model such that all formulas invoked
are true. This search is restricted to a scope, a user provided upper
bound on the universe of discourse. The command on line 5 uses
Alloy’s default scope of 3, meaning that any satisfying instance will
contain at most 3 List atoms and 3 Node atoms.

AUnit addresses the need to have a systematic method to verify
the correctness of Alloy models. AUnit defines testing in Alloy’s
declarative environment – the SAT back-end looks for all satisfying
instances in one execution – by answering: (1) what is a test case
and (2) what test execution and outcomes are.Figure 2 depicts a
fault revealing AUnit test case. AUnit test cases consists of two
portions: (1) a valuation in which the user outlines an instance she
wants to reason over (lines 1-4) and (2) a command that specifies
the formulas under test (lines 5-6). A test passes if the valuation is
a valid instance of the command.The test in Figure 2 fails because
the incorrect use of reflexive transitive closure in Figure 1 builds a
set that includes the node (n) itself. Therefore, Node0 and Node1 are
incorrectly considered to be “reachable from themselves.”

To use AlloyFL to localize the fault, we use an automatically gen-
erated test suite of 22 tests, including the test in Figure 2. We config-
ure AlloyFL to use the Ochiai formula [1] and compute a weighted
score using a ratio of 60% AlloyFL𝑐𝑜 score and 40% AlloyFL𝑚𝑢score.
The output of our execution is shown in Figure 3. In the left panel,
suspicious locations for the displayed model are highlighted, with
red indicating a highly suspicious location. In the right panel, a list
of suspicious locations is depicted with supplementary information.
The actual faulty expression “(*link)” located within the formula “n
!in n.*link” is revealed to be the most suspicious location with a
weighted suspiciousness score of 0.829. This fault further motivates
the difficulty in localizing Alloy bugs where the difference between

Table 1: Suspiciousness Formulas in AlloyFL.

Name Formula

Tarantula [6]
𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒 )

𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑

𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒 )
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑

+ 𝑝𝑎𝑠𝑠𝑒𝑑 (𝑒 )
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑

Ochiai [1] 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒)√
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑×(𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒)+𝑝𝑎𝑠𝑠𝑒𝑑 (𝑒))

Op2 [12] 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒) − 𝑝𝑎𝑠𝑠𝑒𝑑 (𝑒)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑+1

Barinel [2] 1 − 𝑝𝑎𝑠𝑠𝑒𝑑 (𝑒)
𝑝𝑎𝑠𝑠𝑒𝑑 (𝑒)+𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒)

DStar [22] 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒)∗
𝑝𝑎𝑠𝑠𝑒𝑑 (𝑒)+(𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑−𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑒))

totalfailed: total number of tests that failed
totalpassed: total number of tests that passed
failed(e): number of failed tests that cover or kill e
passed(e): number of passed tests that cover or kill e

a correct expression and an incorrect one can be a single symbol
contained within a larger expression or formula.

3 TECHNIQUE
AlloyFL determines which AST nodes of a model are most likely to
be faulty. To achieve this, AlloyFL uses a suspiciousness formula
and combines two different fault localization strategies.

3.1 Suspiciousness Formulas
AlloyFL supports five different suspiciousness formulas: (1) Taran-
tula [6], (2) Ochiai [1], (3) Op2 [12], (4) Barinel [2] and (5) DStar [22].
These formulas are outlined in Figure 1 and are commonly used for
SBFL for imperative languages. For AlloyFL𝑐𝑜 , the code elements
(e) are AST nodes. For AlloyFL𝑚𝑢 , mutations of killed mutants are
treated as covered code elements (e) while mutations of live mu-
tants are treated as uncovered code elements. Since, each mutation
is tied to the AST node that gets mutated, AlloyFL𝑚𝑢 scores as still
tied to AST nodes. totalfailed and totalpassed are the number of
tests which failed and passed for the original model. failed(e) and
passed(e) are the number of failing and passing tests that cover the
AST node or kill the mutant e. In general, for AlloyFL𝑐𝑜 , if a node
is covered by more failing tests but fewer passing tests, then it is
assigned a higher suspiciousness score. For AlloyFL𝑚𝑢 , if a mutated
node makes more failing tests pass but fewer passing tests fail, then
it is assigned a higher suspiciousness score.

3.2 Fault Localization Strategy
The AlloyFL extension implements AlloyFLℎ𝑦 , a hybrid fault lo-
calization techniques that combines the results of AlloyFL𝑐𝑜 and
AlloyFL𝑚𝑢 . We first describe how AlloyFL𝑐𝑜 and AlloyFL𝑚𝑢 work,
and then highlight how we combine the two approaches.

3.3 Spectrum-Based Fault Localization
In traditional imperative programs, fault localizationwill use control-
flow and execution traces to implement spectrum-based fault lo-
calization techniques. In contrast, Alloy’s declarative execution
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Figure 3: AlloyFL GUI Results

environment does not have control-flow. Instead, when a test is ex-
ecuted, every constraint in any invoked paragraph will be executed
together. As a result, all AST nodes declared in the same paragraph
share the same suspiciousness score. Therefore, AlloyFL𝑐𝑜 com-
putes a suspiciousness score for each Alloy paragraph based on the
number of passing/failing tests that cover it and a formula shown in
Table 1. However, we are able to optimize this execution viewpoint
by making use of a static analyzer that finds all Alloy paragraphs
transitively used by a test, but it ignores dependencies that are
never used. For example, if a test uses an expression "all s: S, t:

T | some s && p[s]" where variable "t" is not used, then the test
only depends on signature "S" and predicate "p[...]". Of note, for
Alloy executions, all facts are implicitly used, and all paragraphs
transitively invoked in the facts are covered by each test. As output,
AlloyFL𝑐𝑜 produces a list of paragraphs ranked in descending order
of suspiciousness score. In case of a tie, AlloyFL𝑐𝑜 prioritizes the
paragraph with a smaller number of AST nodes.

3.4 Mutation-Based Fault Localization
To perform mutation-based fault localization, AlloyFL𝑚𝑢 uses the
set of mutation operators outlined byMuAlloy [17]. These operators
mutate different nodes in the AST representation of the model
and span the breadth of the Alloy grammar. To perform MBFL,
AlloyFL𝑚𝑢 collects all AST nodes covered by the failing tests. Then,
AlloyFL𝑚𝑢 iterates over each node𝑛 and applies all valid mutants to
𝑛. A mutant is considered valid if the mutated model does not result
in a compilation error and the mutated model is not equivalent
to the original model. Unlike imperative-based mutation testing,
AlloyFL𝑚𝑢 is able to use the Alloy language itself to check for
equivalence between the original and mutated models with respect
to a given bound. For every valid mutant of 𝑛, a suspiciousness
score of that mutant is calculated by executing the original test
suite over the mutated model and plugging the results into the user
selected suspiciousness formula. After exploring all valid mutants
of 𝑛, AlloyFL𝑚𝑢 retains the largest score found for 𝑛. Once all AST
nodes covered by failing tests are explored, AlloyFL𝑚𝑢 returns the
list of AST nodes sorted in descending order of suspiciousness
scores. As with AlloyFL𝑐𝑜 , in case of a tie, AlloyFL𝑚𝑢 prioritizes

the paragraph with a smaller number of AST nodes. Additionally,
any AST node with a negative suspiciousness score is removed
from the final list presented to the user.

3.5 Hybrid-Based Fault Localization
AlloyFL implements AlloyFLℎ𝑦 , which is a hybrid technique that
leverages both AlloyFL𝑐𝑜 and AlloyFL𝑚𝑢 . To achieve this, for a
given AST node 𝑛, AlloyFLℎ𝑦 calculates a weighted score for 𝑛
that combines 𝑛’s AlloyFL𝑐𝑜 (𝑆𝑐𝑜 ) and AlloyFL𝑚𝑢 (𝑆𝑚𝑢 ) scores.
Specifically, AlloyFLℎ𝑦 computes the weighted sum as (1 − 𝜆)𝑆𝑐𝑜 +
𝜆𝑆𝑚𝑢 , where 0 ≤ 𝜆 ≤ 1. AlloyFLℎ𝑦 allows us to take advantage of
the fact that AlloyFL𝑚𝑢 and AlloyFL𝑐𝑜 have different strengths and
weaknesses for localizing different types of faults. Most notably,
AlloyFL𝑚𝑢 can struggle to localize omission errors in which case
AlloyFL𝑐𝑜 performs relatively well. Thus, AlloyFLℎ𝑦 benefits from
both AlloyFL𝑐𝑜 and AlloyFL𝑚𝑢 .

4 ANALYZER INTEGRATION
AlloyFL is a self contained executable jar file written in Java. Our
implementation of AlloyFL is built of top of the AUnit Analyzer [16],
which is an extension to the latest stable release of the Analyzer [3]
(version 5.0.1) that includes native support for AUnit. To support
AlloyFL, the Analyzer is extended to allow the user to: (1) configure
the AlloyFL execution and (2) update the visual feedback from the
Analyzer to reflect AlloyFL’s ranked list of suspicious locations.

The Analyzer is split into twomain panels: (1) the left-hand panel
is a text editor where users can create Alloy models and (2) the
right-hand panel displays logging information. To use AlloyFL, the
user first opens or builds a faulty Alloy model and a fault revealing
AUnit test suite in the editor panel, as they would any other Alloy
model. Then, the user can configure the AlloyFL execution. AlloyFL
is packaged with the following default settings: the Ochiai suspi-
ciousness formula and a weight of 0.4 (40% AlloyFL𝑚𝑢 score and
60% AlloyFL𝑐𝑜 score). The AlloyFL menu options allow the user to
change both. For the suspiciousness formula, the user is given a list
comprised of all the formulas in Table 1. For the weight, uses can
select a value between 0, which means only AlloyFL𝑐𝑜 ’s score will
be used, and 1, which means only AlloyFL𝑚𝑢 score will be used.
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Table 2: AlloyFL Model Stats and Execution Results

Model #AST #Flt #Test Scp Time (sec) Rank
addr 124 1 30 3 6 1:19
array 68 2 23 3 4 1:7
bst 175 4 110 4 48 1:37
cd 52 2 25 3 1 2:18

ctree 76 1 22 3 3 9:17
dll 92 2 49 3 7 1:7
fsm 85 2 15 3 2 1:27

grade 77 1 41 3 2 1:10
other 40 1 21 3 1 5:11

scl 201 3 87 3 43 1:36

Additionally, to help with the adoption of AlloyFL, the menu also
includes a prompt to view an AlloyFL tutorial.

The user can run AlloyFL either from the icon menu bar or
the AlloyFL menu. Once AlloyFL successfully executes, the user
is presented with the results in two key ways. First, all suspicious
locations are highlighted in the text editor, ranging from deep red
to indicate a highly suspicious location to light yellow indicate a
slightly suspicious location. An example of this behavior can be
seen in Figure 3. Second, AlloyFL generates a results tab which sum-
marizes the execution by presenting the total number of suspicious
AST nodes and presents a breakdown of the runtime. Additionally,
the results tab displays a ranked list of suspicious locations from
most to least suspicious. For each suspicious location, the user is
shown the constraint, the suspiciousness score, and an interactive
link which highlights the location in the editor pane. A portion
of the ranked list output can be seen in Figure 3. This individual
highlighting features helps clearly convey to user what specific
portion of the model is being referenced, as a formula or expression
may appear more than once in a model.

5 EVALUATION
We evaluate AlloyFL on a machine running Ubuntu 20.04 LTS with
1.8GHz Intel Core i7 CPU and 16 GB RAM. AlloyFL is set up to use
the Ochiai formula and an impact weight of 0.4 [21].

5.1 Real-World Faulty Subjects
We present a small but representative evaluation of AlloyFL over
10 real world faulty models. Address book (addr) is from Alloy’s
example set, which was incorrect in earlier versions of Alloy. Grade
book (grade) and other groups (other) are Alloy translations of
access-control specifications used in Amalgam [14]. Colored tree
(ctree) is from MuAlloy [17]. These four models represent faults
introduced by more experienced Alloy users. Array (array), bi-
nary search tree (bst), class diagram (cd), doubly-linked list (dll),
finite state machine (fsm), and singly-linked list with sorting and
counting (scl) are homework questions we collected from graduate
students, which reflect faults created by new Alloy users.

To convey complexity, we report four different metrics in Ta-
ble 2 related to the size of the fault localization problem: (1) column
two (#AST) show the total number of AST nodes in the model,
(2) column three (#Flt) presents the number of faults in the model,
(3) column four (#Test) depicts the size of the test suite and (4) col-
umn five (Scp) shows the maximum scope used to run the tests.
Since many of these faulty models did not come with AUnit test

suites, for our experiments, we automatically generated a test suite
using MuAlloy, which has been shown to be effective at revealing
faults in real world models [17, 20].

5.2 Results
To evaluate AlloyFL, we use the total execution time and the ranking
of the actual faulty location to measure efficiency and effectiveness
respectively. In Table 2 column five (Time) presents the runtime
from the time the user presses the button to run AlloyFL to the
time the results are presented to the user in seconds. AlloyFL’s
runtime does increase as both the number of AST nodes and the
size of the test suite increases, both of which increase the size of
the fault localization problem. For all executions, the AlloyFL𝑚𝑢

portion of AlloyFLℎ𝑦 takes up a majority of the execution time.
Since AlloyFL𝑚𝑢 performs mutation testing, it is expected that
AlloyFL𝑚𝑢 ’s runtime would increase as the size of the test suite
increases. However, the overhead of AlloyFL is not prohibitive as
all models run in under a minute.

Column six (Rank) presents a ratio depicting the rank of the
faulty location in the list reported to the user and the total number
of suspicious locations. For example, for the model scl, the rank 1:36
means an actual faulty location was reported as the first suspicious
location out of 36 total suspicious locations. If there is more than one
faulty location, column six will reflect the highest ranked actually
faulty node. For 7 of the 10 models, AlloyFL reports a faulty location
as the highest suspicious node. Furthermore, for cd, the top two
nodes have the same suspiciousness score; however, the real faulty
location encapsulated a larger formula and was ranked second
instead of first. While AlloyFL often reports a faulty location as
the most suspicious location, AlloyFL can struggle with under-
constrained faults (ctree and other), in which the error is the
omission of a formula. For example, for ctree, while AlloyFL is
able to flag the unconstrained fact undirected as suspicious, the
location is ranked as 9th out of 17 locations. AlloyFL also works in
the presence of multiple faults. To highlight AlloyFL’s performance
with multiple faults present, we can look at bst’s ranked list beyond
just the top result. For bst, AlloyFL flags three of bst’s four faulty
locations in the top 5 suspicious locations reported.

6 CONCLUSION
This paper introduces the open-source AlloyFL tool for fault local-
ization of Alloy models. To localize a fault, AlloyFL uses an AUnit
test suite with at least one failing test, a user-selected suspicious-
ness formula and a user selected weight, to create a ranked list
of suspicious locations in the faulty Alloy model. In addition, as
part of the reporting, suspicious portions of the model are high-
lighted from yellow to red, depending on their suspiciousness score.
Experimental results reveal AlloyFL is effective at ranking faulty
locations, works in the presence of multiple faults and localizes
faults quickly. Since AlloyFL is packaged as an extension of Alloy’s
IDE, AlloyFL paves the way for new users to explore Alloy while
benefiting form the use of AlloyFL in their development practices.
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