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a b s t r a c t

Rapid advancements in deep learning have led to many recent breakthroughs. While deep learning
models achieve superior performance, often statistically better than humans, their adoption into safety-
critical settings, such as healthcare or self-driving cars is hindered by their inability to provide safety
guarantees or to expose the inner workings of the model in a human understandable form. We present
MoËT, a novel model based on Mixture of Experts, consisting of decision tree experts and a generalized
linear model gating function. Thanks to such gating function the model is more expressive than the
standard decision tree. To support non-differentiable decision trees as experts, we formulate a novel
training procedure. In addition, we introduce a hard thresholding version, MoËTh, in which predictions
are made solely by a single expert chosen via the gating function. Thanks to that property, MoËTh
allows each prediction to be easily decomposed into a set of logical rules in a form which can be
easily verified. While MoËT is a general use model, we illustrate its power in the reinforcement
learning setting. By training MoËT models using an imitation learning procedure on deep RL agents
we outperform the previous state-of-the-art technique based on decision trees while preserving the
verifiability of the models. Moreover, we show that MoËT can also be used in real-world supervised
problems on which it outperforms other verifiable machine learning models.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Deep learning has achieved many recent breakthroughs, in
hallenging domains such as Go (Silver et al., 2016), and health-
are (Esteva et al., 2019; Miotto, Wang, Wang, Jiang, & Dud-
ey, 2018) to name a few. Encoding state representation via
eep neural networks allows DRL agents to achieve superior per-
ormance. Also it enables development of performant radiology
odels (Cheng et al., 2016; Cicero et al., 2017; Kooi et al., 2017).
owever, the models learned do not provide safety guarantees
nd are hard to analyze, which hinders their use in safety-critical
pplications.
An effective recent approach, called Viper, follows the DAgger

mitation learning procedure (Ross, Gordon, & Bagnell, 2011) to
reate a decision tree model mimicking a DRL agent (Bastani,
u, & Solar-Lezama, 2018). The key advantage of such decision
ree models is that they are amenable to verification. Moreover,
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they are shown to perform well on environments such as Pong.
However, decision trees are limited to axis perpendicular decision
boundaries, which can adversely impact the performance. In this
paper, we alleviate this issue by proposing a model with less
restrictions on the geometry of decision boundaries.

We present MoËT (Mixture of Expert Trees), a technique based
on Mixture of Experts (MoE) (Jacobs, Jordan, Nowlan, Hinton,
et al., 1991; Jordan & Xu, 1995; Yuksel, Wilson, & Gader, 2012).
MoËT consists of DT experts and a gating function that deter-
mines the weights with which experts are used. Standard MoE
models can typically use any expert as long as it is a differentiable
function of model parameters. In this paper we tackle the prob-
lem of using non-differentiable decision trees in MoE context,
as a means of obtaining verifiable DRL agents. Similar to MoE
training by Expectation–Maximization (EM) algorithm, we first
observe that MoËT can be trained by interchangeably optimizing
the weighted log likelihood for experts (independently from one
another) and optimizing the gating function with respect to the
obtained experts. Based on that, we propose a procedure for
DT learning in the specific context of MOE. To the best of our
es and its application toverifiable reinforcement learning.NeuralNetworks (2022),
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nowledge we are first to combine standard non-differentiable
T experts with MoE approach.
For a gating function, we use a simple generalized linear

odel with softmax function, which provides a distribution over
xperts. While decision boundaries of DTs are axis-perpendicular,
he softmax gating function supports boundaries with hyper-
lanes of arbitrary orientations, thus improving expressiveness.
e also consider a variant of MoËT model that uses hard thresh-
lding (MoËTh) which selects just one most likely expert tree.

Since MoE training algorithm tends to assign a region of space
to a single expert (P(e|r) ≈ 1) anyway, this variant does not
suffer in performance, as we empirically demonstrate. Benefits
of MoËTh compared to the soft version of MoËT are that it (a)
allows for decomposing a decision into a set of logical rules, thus
providing means for interpreting the model decisions, and (b)
allows translation to satisfiability modulo theories (SMT)1 for-
mulas (Biere, Heule, van Maaren, & Walsh, 2009), thus providing
rich opportunities for formal verification using off the shelf SMT
solvers,2 as we demonstrate in the paper.

To employ MoËT in DRL setting we use the DAgger imita-
tion learning procedure to mimic DRL agents. We evaluate our
technique on six different environments: CartPole, Pong, Acrobot,
Mountaincar, Lunarlander and Pendulum. We show that MoËT
chieves better rewards and lower misprediction rates than Viper.
inally, we demonstrate how a MoËT policy for CartPole can be
ranslated into an SMT formula to verify its properties using the
3 theorem prover (De Moura & Bjørner, 2008). In addition we
howed that MoËT can also be used in real-world supervised
achine learning problems. We demonstrated that compared to

he other verifiable machine learning models (logistic regression,
ecision trees and support vector classifiers with linear kernels)
oËT achieved much better results. By improving reliability of
I systems and to a degree improving their interpretability, our
ork aims at positive societal impact.
In summary, this paper makes the following key contributions:

1. We proposeMoËT, a technique based onMoEwith decision
tree experts, and present a learning algorithm to train
MoËT models.

2. We create MoËTh, MoËT version with hard thresholding
and softmax gating function which can be translated to an
SMT formula amenable for verification and is not hard to
interpret in case of small models.

3. We apply MoËT models in the RL setting, evaluate it on
different environments and show that they lead to more
performant models compared to Viper decision trees.

4. We apply MoËT models in real-world supervised problems
and show that MoËT achieved better results compared to
the others verifiable machine learning models.

The remainder of the paper is structured as follows. In Sec-
ion 2 the related work is reviewed. Motivating example to show-
ase some of the key difference between Viper and MoËT is
resented in Section 3, whereas background methodology is pre-
ented in 4. Explanation of MoËT model is given in Section 5.
xperimental setup and results obtained on different RL environ-
ents and supervised datasets are presented in Section 6. The
onclusions are drawn in Section 7.

1 Very roughly, SMT is the problem of determining whether a mathematical
ormula is satisfiable, and it generalizes the Boolean satisfiability problem (SAT)
o more complex formulas.
2 SMT solvers are tools designed to solve SMT problems.
2

2. Related work

Verifiable Machine Learning: RL algorithms are notoriously
hard to debug and verify (Amir, Schapira, & Katz, 2021; VanWesel
& Goodloe, 2017). A number of techniques has been proposed
for enabling verification in RL setting (Kazak, Barrett, Katz, &
Schapira, 2019; Li, Serlin, Yang, & Belta, 2019; Verma, Le, Yue, &
Chaudhuri, 2019; Zhu, Xiong, Magill, & Jagannathan, 2019). One
existing approach synthesizes a program that approximates an
RL policy (Zhu et al., 2019). The program acts as a shield, and
their technique coordinates between using the shield program
and original policy, which in combination provide safety guaran-
tees. Instead of using a programmatic policy as a shield, another
approach (Verma et al., 2019) creates a programmatic policy that
can replace neural network policy altogether. Niu, Wu, Tang, Ma,
and Chen (2020) provide a general framework that leverages
the success of verifiable and safe model-free RL in learning high
performance controllers. Another system for verification of deep
RL agents is presented in Kazak et al. (2019). A hybrid RL agent
framework that produces high-level autonomous verifiable be-
havior for unmanned vehicles is introduced in Wang and Pandit
(2019). An abstraction approach, based on interval Markov deci-
sion processes, that yields probabilistic guarantees on accuracy
of policy’s execution, and presents techniques to build and solve
different kind of control problems using abstract interpretation,
mixed-integer linear programming, entropy-based refinement,
and probabilistic model checking is presented in Bacci and Parker
(2022).

Compared to the other approaches, in this paper we propose a
pure machine learning technique that is verifiable and applicable
even outside of the RL setting. There has also been recent work
on verification of random forests and tree ensembles (Törnblom
& Nadjm-Tehrani, 2018, 2020). Such approaches might be useful
in our future work to extend verification from MoËTh to general
oËT models (which we describe later).
Explainable Machine Learning: There has been a lot of recent

nterest in explaining decisions of black-box models (Doshi-Velez
Kim, 2017; Guidotti et al., 2018; Roscher, Bohn, Duarte, &

arcke, 2020). Nowadays, a large set of explainable RL literature is
merging, intended to provide ethical, responsible and trustable
lgorithms for explaining model outputs of DRL agents (Heuillet,
outhouis, & Díaz-Rodríguez, 2021; Puiutta & Veith, 2020; Wells
Bednarz, 2021). Shi, Li, Li, Pan, and Liu (2021) proposed

PM—an explainable RL framework for portfolio management
ptimization that is based on application of class activation map-
ings for output explanation. Similarly, Ayala, Cruz, Fernandes,
nd Dazeley (2021) proposed the introspection-based method
or transforming Q-values into probabilities of success, used as
he base to explain the agent’s decision-making process. Be-
ides of the explainable RL algorithms, the two most well known
lgorithms that are commonly used for deep learning models
nterpretation are LIME (Ribeiro, Singh, & Guestrin, 2016) and
ORE (Guidotti et al., 2018). LIME and LORE explain behavior of a
lack-box model locally, around an input of interest, by sampling
he black-box model around the neighborhood of the input, and
raining a local DT (or a linear model) over the sampled points.

Another view at MoËT is that it explains behavior of a deep
L agent. MoËT combines local trees into a global policy by
ombining local decision trees via a gating function. Inspection of
he trees and the gating might shed light on the agent’s decision
aking. However, we do not focus on this aspect in this paper.
Tree-Structured Models: Tree-Structured models are very at-

ractive type of machine learning algorithms due to low complex-
ty and interpretability (Kotsiantis, 2013; Niuniu & Yuxun, 2010).
rsoy, Yıldız, and Alpaydın (2012) propose a decision tree model
ith soft decisions at internal nodes where children are chosen
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Fig. 1. An illustratory Gridworld environment (left), a Viper policy learned for the environment (middle), and a MoËT policy learned for the environment (right).
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with probabilities given by a sigmoid gating function. However,
this reduces the tree’s interpretability. Binary tree-structured hi-
erarchical routing mixture of experts (HRME) model, which has
classifiers as non-leaf node experts and simple regression models
as leaf node experts, was proposed in Zhao, Gao, Memon, Raj,
and Singh (2019). Hester and Stone (2013) use random forests
in RL setting to build a model of environment from which policy
is inferred.

The form of our model can be related to these models, but it is
designed with verifiability in mind and we also propose a novel
training procedure suited to that specific model.

Knowledge Distillation and Model Compression: We rely
on ideas already explored in fields of model compression (Bu-
ciluǎ, Caruana, & Niculescu-Mizil, 2006) and knowledge distilla-
tion (Gou, Yu, Maybank, & Tao, 2021; Hinton, Vinyals, & Dean,
2015; Wang, Wei, & Wu, 2021). The idea is to use a complex
well performing model to facilitate training of a simpler model
which might have some other desirable properties (e.g., verifia-
bility and interpretability). Such practices have been applied to
approximate decision tree ensemble by a single tree (Breiman
& Shang, 1996). In contrast, we approximate a neural network.
Similarly, a neural network can be used to train another neu-
ral network (Furlanello, Lipton, Tschannen, Itti, & Anandkumar,
2018), but neural networks are hard to interpret and even harder
to formally verify. Such practices have also been applied in the
field of reinforcement learning in knowledge and policy distil-
lation (Gao, Xu, Ding, & Wang, 2021; Koul, Fern, & Greydanus,
2019; Rusu et al., 2016; Tsantekidis, Passalis, & Tefas, 2021; Zhang
et al., 2019), which are similar in spirit to our work, and imitation
learning (Abbeel & Ng, 2004; Bastani et al., 2018; Ross et al., 2011;
Schaal, 1999), which provide a foundation for our work.

3. Motivating example: gridworld

We now present a simple motivating example to showcase
some of the key differences between Viper and MoËT approaches.
Consider the N × N Gridworld problem shown in Fig. 1 (for
N = 5). The agent is placed at a random position in a grid (except
the walls denoted by filled rectangles) and should find its way
out. To move through the grid the agent can choose to go up,
left, right or down at each time step. If it hits the wall (gray cell)
it stays in the same position (state). State is represented using two
integer values (x, y coordinates) which range from (0, 0)—bottom
eft to (N − 1,N − 1)—top right. The grid can be escaped through
ither left doors (left of the first column), or right doors (right of
he last column). A negative reward of −0.1 is received for each
gent action (negative reward encourages the agent to find the
xit as fast as possible). An episode finishes as soon as an exit is
eached or if 100 steps are made whichever comes first.

The optimal policy (π∗) for this problem consists of taking
he left (right resp.) action for each state below (above resp.)
3

Table 1
Size comparison of MoËT and Viper DT policies on the Gridworld problem
(Fig. 1), for different sizes of the square board (N×N). The left side of the table
presents the depths of obtained models (that perfectly mimic optimal policy) for
MoËT and for Viper (DTs), while the right side presents the number of nodes in
these models. Both the depth and the number of nodes show that by increasing
size of the grid (N) size of MoËT models stays constant, while Viper (DT) models
grow in size.
N Depth Nodes

MoËT Viper DT MoËT Viper DT

5 1 3 3 9
6 1 4 3 11
7 1 4 3 13
8 1 4 3 15
9 1 4 3 17
10 1 5 3 21

the diagonal. We used π∗ as a teacher and imitation learning
pproach of Viper to train an interpretable DT policy that mimics
∗. The resulting DT policy is shown in Fig. 1. The DT partitions
he state space (grid) using lines perpendicular to x and y axes,
ntil it separates all states above diagonal from those below. This
esults in a DT of depth 3 with 9 nodes. On the other hand, the
olicy learned by MoËT is shown in Fig. 1. The MoËT model with
experts learns to partition the space using the line defined by
linear function 1.06x + 1.11y = 4 (roughly the diagonal of the
rid). Points on the different sides of the line correspond to two
ifferent experts which are themselves DTs of depth 0 always
hoosing to go left (below) or right (above).
We notice that DT policy needs much larger depth to repre-

ent π∗ while MoËT can represent it as only one decision step.
urthermore, with increasing N (size of the grid), complexity of
T grows, while MoËT complexity stays the same; we empirically
onfirm this as follows. For Gridworld sizes N = 5, 6, 7, 8, 9, 10,
he depths of obtained DTs are 3, 4, 4, 4, 4, 5 and the numbers
f their nodes are 9, 11, 13, 15, 17, 21 respectively. In contrast,
oËT models of the same complexity and structure as the one
hown in Fig. 1 are learned for all values of N . We present these
results in Table 1 for better readability (all policies learned are
equivalent to π∗).

4. Background

In this section we provide description of two relevant methods
we build upon: (1) Viper, an approach for interpretable imitation
learning, and (2) MoE learning framework.

Viper. Viper algorithm (included in Appendix.) is an instance
of DAgger imitation learning approach, adapted to prioritize crit-
ical states based on Q-values. Inputs to the Viper training algo-
rithm are (1) environment e which is an finite horizon (T -step)

Markov Decision Process (MDP) (S, A, P, R) with states S, actions
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, transition probabilities P : S × A × S → [0, 1], and rewards
: S → R; (2) teacher policy πt : S → A; (3) its Q-function
πt : S × A → R and (4) number of training iterations N .
istribution of states after T steps in environment e using a policy
is d(π )(e) (assuming randomly chosen initial state). Viper uses

he teacher as an oracle to label the data (states with actions).
t initially uses teacher policy to sample trajectories (states) to
rain a student (DT) policy. It then uses the student policy to
enerate more trajectories. Viper samples training points from
he collected dataset D giving priority to states s having higher
mportance I(s), where I(s) = maxa∈A Q πt (s, a)−mina∈A Q πt (s, a).
his sampling of states leads to faster learning and shallower
Ts. The process of sampling trajectories and training students is
epeated for number of iterations N , and the best student policy
s chosen using reward as the criterion.

Mixture of Experts. MoE is an ensemble model (Jacobs et al.,
991; Jordan & Xu, 1995; Yuksel et al., 2012) that consists of
xpert networks and a gating function. Gating function divides
he input (feature) space into regions for which different experts
re specialized and responsible. MoE is flexible with respect to
he choice of expert models as long as they are differentiable
unctions of model parameters (which is not the case for DTs).

In MoE framework, probability of outputting y ∈ Rm given an
nput x ∈ Rn is given by:

P(y|x, θ ) =
E∑

i=1

P(i|x, θg )P(y|x, θi) =
E∑

i=1

gi(x, θg )P(y|x, θi) (1)

where E is the number of experts, gi(x, θg ) is the probability
of choosing the expert i (given input x), P(y|x, θi) is the proba-
bility of expert i producing output y (given input x). Learnable
parameters are θ = (θg , θe), where θg are parameters of the
gating function and θe = (θ1, θ2, . . . , θE) are parameters of the
experts. Gating function can be modeled using a softmax func-
tion over a set of linear models. Let θg consist of parameter
vectors (θg1, . . . , θgE), then the gating function can be defined as
gi(x, θg ) = exp(θTgix)/

∑E
j=1 exp(θTgjx).

In the case of classification, an expert i outputs a vector yi of
length C , where C is the number of classes. Expert i associates a
probability to each output class c (given by yic) using the gating
function. Final probability of a class c is a gate weighted sum of
yic for all experts i ∈ 1, 2, . . . , E. This creates a probability vector
y = (y1, y2, . . . , yC ), and the output of MoE is argmaxi yi.

MoE is commonly trained using an EM algorithm, where in-
stead of direct optimization of the likelihood one performs opti-
mization of an auxiliary function L̂ defined in a following way. Let
z denote the expert chosen for instance x. Then joint likelihood of
x and z can be considered. Since z is not observed in the data, log
likelihood of samples (x, z, y) cannot be computed, but instead
expected log likelihood can be considered, where expectation is
taken over z. Since the expectation has to rely on some distri-
bution of z, in the iterative process, the distribution with respect
to the current estimate of parameters θ is used. More precisely
function L̂ is defined by Jordan and Xu (1995):

L̂(θ, θ (k)) = Ez[log P(x, z, y)|x, y, θ (k)]

=

∫
P(z|x, y, θ (k)) log P(x, z, y)dz (2)

where θ (k) is the estimate of parameters θ in iteration k. Then,
for a specific sample D = {(xi, yi) | i = 1, . . . ,N}, the following
formula can be derived (Jordan & Xu, 1995):

L̂(θ, θ (k)) =
N∑
i=1

E∑
j=1

h(k)
ij log gj(xi, θg )+

N∑
i=1

E∑
j=1

h(k)
ij log P(yi|xi, θj)
(3)

4

where it holds

h(k)
ij =

gj(xi, θ
(k)
g )P(yi|xi, θ

(k)
j )∑E

l=1 gl(xi, θ
(k)
g )P(yi|xi, θ

(k)
l )

(4)

5. Mixture of expert trees

In this section we explain the adaptation of original MoE
odel to mixture of decision trees, and present both training and

nference algorithms.
Considering that coefficients h(k)

ij (Eq. (4)) are fixed with re-
pect to θ and that in Eq. (3) the gating part (first double sum)
nd each expert part depend on disjoint subsets of parameters
, training can be carried out by interchangeably optimizing
he weighted log likelihood for experts (independently from one
nother) and optimizing the gating function with respect to the
btained experts. The training procedure for MoËT, described by
lgorithm 1, is based on this observation. First, the parameters
f the gating function are randomly initialized (line 2). Then the
xperts are trained one by one. Each expert j is trained on a
ataset Dw of instances weighted by coefficients h(k)

ij (line 5), by
pplying specific DT learning algorithm (line 6) that we adapted
or MoE context (described below). After the experts are trained,
n optimization step is performed (line 7) in order to increase
he gating part of Eq. (3). At the end, the parameters are returned
line 8).

Our tree learning procedure is as follows. Our technique mod-
fies original MoE algorithm in that it uses DTs as experts. The
fundamental difference with respect to traditional model comes
from the fact that DTs do not rely on explicit and differentiable
loss function which can be trained by gradient descent or New-
ton’s methods. Instead, due to their discrete structure, they rely
on a specific greedy training procedure. Therefore, the training
of DTs has to be modified in order to take into account the
attribution of instances to the experts given by coefficients h(k)

ij ,
ometimes called responsibility of expert j for instance i. If these
esponsibilities were hard, meaning that each instance is assigned
o strictly one expert, they would result in partitioning the feature
pace into disjoint regions belonging to different experts. On the
ther hand, soft responsibilities are fractionally distributing each
nstance to different experts. The higher the responsibility of an
xpert j for an instance i, the higher the influence of that instance
n that expert’s training. In order to formulate this principle, we
onsider which way the instance influences construction of a tree.
irst, it affects the impurity measure computed when splitting the
odes and second, it influences probability estimates in the leaves
f the tree. We address these two issues next.
A commonly used impurity measure to determine splits in

he tree is the Gini index. Let U be a set of indices of instances
ssigned to the node for which the split is being computed and
U set of corresponding instances. Let categorical outcomes of y
e 1, . . . , C , and for l = 1, . . . , C let denote pl as a fraction of
nstances in DU for which it holds y = l. More formally pl =∑

i∈U I[yi=l]
|U | , where I denotes indicator function of its argument

expression and equals 1 if the expression is true. Then the Gini
index G of the set DU is defined by: G(p1, . . . , pC ) = 1−

∑C
l=1 p

2
l .

onsidering that the assignment of instances to experts are frac-
ional as defined by responsibility coefficients h(k)

ij (which are
rovided to tree fitting function as weights of instances computed
n line 5 of the algorithm), this definition has to be modified in
hat the instances assigned to the node should not be counted,
ut instead, their weights should be summed. Hence, we propose
he following definition:

ˆ l =

∑
i∈U I[yi = l]h(k)

ij∑ (k) (5)

i∈U hij
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Algorithm 1 MoËT training.

1: procedure MoËT (Data {(xi, yi) | i = 1, . . . ,N}, Epochs NE , Number of Experts E)
2: θg ← initialize()
3: for k← 1 to NE do
4: for j← 1 to E do

5: Dw ←
{(

xi, yi,
gj(xi,θg )P(yi|xi,θj)∑E

e=1 ge(xi,θg )P(yi|xi,θe)

)
| i = 1, . . . ,N

}
6: θj ← fit_tree(Dw)

7: θg ← θg + λ∇θ ′
∑N

i=1
∑E

j=1

[
gj(xi,θg )P(yi|xi,θj)∑E

e=1 ge(xi,θg )P(yi|xi,θe)
log gj(xi, θ ′)

]
8: return θg , (θ1, . . . , θE)
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and compute the Gini index for the set DU as G(p̂1, . . . , p̂C ).
Similar modification can be performed for other impurity mea-
sures (such as entropy) relying on distribution of outcomes of a
categorical variable. Note that while the instance assignments to
experts are soft, instance assignments to nodes within an expert
are hard, meaning sets of instances assigned to different nodes
are disjoint. Probability estimate for y in the leaf node is usually
performed by computing fractions of instances belonging to each
class. Instead of such estimates, again, we use estimates p̂l defined
by Eq. (5). Hence, the estimates of probabilities P(y|x, θ (k)j ) needed
y MoE are defined. In Algorithm 1, function fit_tree performs
ecision tree training using the above modifications.

We consider two ways to perform inference with respect to
he obtained model. First one which we call MoËT, is performed
y maximizing P(y|x, θ ) with respect to y where this probability
s defined by Eq. (1). The second way, which we call MoËTh,
erforms inference as argmaxy P(y|x, θargmaxj gj(x,θg )), meaning
hat we only rely on the most probable expert.

Adaptation of MoËT to imitation learning. We integrate
oËT model into imitation learning approach of Viper by sub-
tituting training of DT with the MoËT training procedure.
Verifiability by translating MoËT to SMT. We define a trans-

ation of MoËTh models to SMT formulas, which opens a range
f possibilities for validating and interpreting the model using
utomated reasoning tools. SMT formulas provide a rich means
f logical reasoning, where a user can query the solver with
uestions such as: ‘‘What inputs do the two models differ on?’’,
r ‘‘What is the closest input to the given input using which
odel makes a different prediction?’’, or ‘‘Are the two models
quivalent?’’, or ‘‘Are the two models equivalent in respect to
he output class C?’’. Answers to such questions can help better
nderstand and compare models in a rigorous way. Also note that
he symbolic reasoning of the gating function and decision trees
llows construction of SMT formulas that are readily handled
y off-the-shelf tools, whereas direct SMT encoding of neural
etworks do not scale for any reasonably sized network because
f the need for non-linear arithmetic reasoning.
We show the translation of MoËT policy to SMT constraints

or verifying policy properties. We present an example translation
f MoËT policy on CartPole environment with the same property
pecification that was proposed for verifying Viper policies (Bas-
ani et al., 2018). The goal in CartPole is to keep the pole upright,
hich can be encoded as a formula:

≡ s0 ∈ S0 ∧
∞⋀
t=1

|φ(f (st−1, π (st−1)))| ≤ y0

here si represents state after i steps, φ is the deviation of pole
rom the upright position. In order to encode this formula it is
ecessary to encode the transition function f (s, a) which models
 i

5

nvironment dynamics: given a state and action it returns the
ext state of the environment. Also, it is necessary to encode
he policy function π (s) that for a given state returns action to
erform. There are two issues with verifying ψ: (1) infinite time
orizon; and (2) the nonlinear transition function f . To solve this
roblem, Bastani et al. (2018) use a finite time horizon Tmax = 10
nd linear approximation of the dynamics. We make the same
ssumptions.
To encode π (s) we need to translate both the gating function

nd DT experts to logical formulas. Since the gating function in
oËTh uses exponential function, it is difficult to encode the func-

ion directly in Z3 as SMT solvers do not have efficient decision
rocedures to solve non-linear arithmetic. The direct encoding
f exponentiation therefore leads to prohibitively complex Z3
ormulas. We exploit the following simplification of the gating
unction that is sound when hard prediction is used:

= argmax
i

(
exp(θ Tgix)∑E
j=1 exp(θ

T
gjx)

)
= argmax

i
(exp(θ Tgix))

= argmax
i

(θ Tgix) (6)

First simplification is possible since the denominators of the
gating functions are same for all experts, and second is due to
the monotonicity of the exponential function. We use the same
DT encoding as in Viper. To verify that ψ holds we need to show
that ¬ψ is unsatisfiable. In the experimental evaluation we run
he verification with our MoËTh policies and show that ¬ψ is
ndeed unsatisfiable.

Expressiveness. DTs make their decisions by partitioning the
eature space into regions which have borders perpendicular to
oordinate axes. To approximate borders that are not perpen-
icular to coordinate axes very deep trees are often necessary.
oËTh mitigates this shortcoming by exploiting hard softmax
artitioning of the feature space using borders which are still
yperplanes, but need not be perpendicular to coordinate axes
see Section 3), which improves the expressiveness.

Interpretability. While we do not focus on interpretability in
his work, it is useful to note that MoËTh models do exhibit some
nterpretability properties. A MoËTh model is a combination of a
inear model and several decision tree models. Only a single DT
s used for each prediction (instead of weighted average), which
acilitates interpretability. If the models are small (e.g, depth ≤
0) and include small number of features, a person can easily
imulate and understand the model. These observations resonate
ith several points about interpretability made in Lipton (2016)
Limitations. Our work tries to strike a balance between ex-

ressiveness, which allows for more performant models, and
erifiability, which allows for more reliable models. Therefore,
hile being more expressive than decision trees, MoËT still has

imited expressiveness compared to deep learning models, which
s a price paid for easier verifiability.
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Fig. 2. Performance saturation of Viper. Multiple models are trained for a single maximum depth of Viper decision trees, while maximum depth is incrementally
ncreased, showing the mean value and standard deviation of reward and fidelity with respect to the depth. These results inform when Viper performance saturates,
.e., reaches a point upon which increasing maximum depth is not helpful anymore, we call that point performance saturation depth.
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. Evaluation

We first discuss DRL agents we use as a starting point in
he imitation learning. Second, we explore the performance ca-
abilities of Viper by finding decision tree depths at which the
erformance saturates—cannot be improved by increasing the
epth further. Then, after ensuring that we explored the useful
pace of configurations for Viper, we pick the best performing
iper models and compare them with the best performing MoËT
odels to quantitatively compare the two. Finally, we re-evaluate
erformance of the models to evaluate how well they generalize.
lso, we verify MoËTh policies on CartPole environment and

visually compare the expressiveness of different policies. Even-
tually, we presented that MoËT can be also successfully applied
n real-world supervised learning problems.

DRL agents. We use following OpenAI Gym environments
n our evaluation: CartPole, Acrobot, Mountaincar, Lunarlander,
 t

6

Pong and Pendulum (description of the environments is included
in the Appendix). For DRL agents, we use a policy gradient model
in CartPole, a deep Q-network (DQN) (Mnih et al., 2015) in Pong,
and dueling DQN (Wang et al., 2015) in the other environments
(training hyperparameters provided in the Appendix). We train
MoËT and Viper policies by mimicking the agents. The rewards
(total return during an episode) obtained by the DRL agents on
CartPole, Acrobot, Mountaincar, Lunarlander, Pong and Pendulum
are 200.00,−68.60,−105.27, 190.90, 21.00 and−158.13, respec-
ively. Rewards are averaged across 100 (250 in CartPole) runs
episodes).

Performance saturation of Viper. We first examine perfor-
ance capabilities of Viper, i.e., answer the question of when

he performance saturates, by examining performance of decision
rees of gradually increased maximum depth (Fig. 2). For each
epth we train multiple Viper models and show performance
rends in terms of reward and fidelity. By reward we mean
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Fig. 3. Best performing Viper, MoËT and MoËTh models. Pareto fronts (in respect to the reward and fidelity) are identified separately for Viper, MoËT and MoËTh
models. Global Pareto fronts are shown with points connected by a gray solid line.
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cumulative reward achieved during an episode, while fidelity
represents percent of times a student performs the same action
as its teacher (DRL agent). Achieving high reward indicates that
a student is performing well, while high fidelity indicates that
the student policy is close to the teacher’s. We ensure to train at
least 5 different Viper models for each depth.3 Using the perfor-
mance trend plots we infer when Viper performance saturates,
i.e., reaches a depth after which further increasing maximum
depth does not help. Performance saturation depths for CartPole,
Acrobot, Mountaincar, Lunarlander, Pong and Pendulum are 8,
15, 12, 20, 30 and 20, respectively. Identifying the performance
saturation points for Viper is helpful in identifying the overall best

3 We train at least 5 Viper models for each subject and maximum depth
alue. Due to the computational limitations actual number of Viper models
rained varies across environments: CartPole ∈ [35, 70], Acrobot ∈ [10, 70],
ountaincar ∈ [10, 70], Lunarlander ∈ [10, 70], Pong ∈ [5, 24] and Pendulum
{10}.
 l
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erforming Viper model, thus giving confidence during compari-
on with MoËT models that we explored the useful space of Viper
onfigurations.
Best performing Viper, MoËT and MoËTh models. We next

ompare Viper, MoËT and MoËTh models by visualizing their
areto fronts with respect to the reward and fidelity (Fig. 3).
areto front of a set of models consists of all models from that
et which are not dominated by any other model from the set in
erms of reward or fidelity. In other words, every model dom-
nated by another model in terms of both metrics is not con-
idered. From the set of all Viper models trained for different
aximum depths (from depth 1 to the saturation depth) we
elect models on the Pareto front. Similar is done for MoËT and
oËTh which we trained for different number of experts and
xpert depths (information about configurations used is provided
n the Appendix). A global Pareto front (best models across all
rchitectures) is shown with points connected by a black solid
ine.
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Fig. 4. Performance generalization of models. Models on the Pareto fronts (Fig. 3) are re-evaluated. Black solid line connects models that were on the global Pareto
front before re-evaluation.
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By inspecting the results we notice that in the case of CartPole,
ll 3 models achieve maximum reward (200), however fidelity
s significantly higher in the case of MoËT and MoËTh (over 99%
compared to 97%). Also, it is interesting to note that both MoËT
nd MoËTh models on the Pareto front consist of 2 experts of

depth 0, while the Viper model on the Pareto front is a decision
tree of depth 6. In the case of Acrobot, we notice that MoËT
odels dominate MoËTh and Viper models, and that MoËTh mod-
ls dominate Viper models. Thus, both MoËT and MoËTh models
chieve higher reward and fidelity over Viper models. In the case
f Mountaincar, the global Pareto front contains some Viper mod-
ls, but mostly MoËT and MoËTh dominate. Furthermore, models
xhibiting the highest reward as well as fidelity are MoËT and
oËTh models. In the case of Lunarlander, both MoËT and MoËTh
ominate Viper models. A MoËTh model achieves the maximum
eward of over 260 while a Viper model achieves the maximum
eward of around 215. Furthermore, both MoËT and MoËTh mod-
ls achieve better fidelity compared to Viper. In the case of Pong,
ll 3 models achieve maximum reward (21), however fidelity is
8

igher for MoËT and MoËTh. In the case of Pendulum, MoËT and
oËTh models achieve better maximum reward, while maximum

idelity is about equal for all the models. Note that for a given
idelity score, MoËT and MoËTh are advantageous to Viper. Scores
f the points on the global Pareto front are presented in a tabular
orm in Appendix E.

Performance generalization of models. In the supervised
earning setting, after the best models are selected based on their
erformance on a validation set, they are re-evaluated on a test
et to get a better estimate of their performance on the new data.
n RL setting there is no direct analogy to validation and test
atasets, but the models can be re-evaluated after the selection
s performed. After we identify the best models on the Pareto
ronts (Fig. 3), we re-evaluate their performance by running them
gain through the RL environment. Fig. 4 shows the achieved
erformance of these models after re-evaluation. In the case of
artPole and Pong performance before and after re-evaluation are
ery similar. In the case of Acrobot, Mountaincar and Lunarlander,
odels that were on the global Pareto front are mostly still on
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Fig. 5. Verification times.

he global Pareto front in the re-evaluation. Moreover, MoËT
nd MoËTh models dominate Viper models in most of the cases.
endulum environment behaves more stochastically—evaluating
olicy (done across 100 episodes) can exhibit significantly differ-
nt reward from evaluation to evaluation, making results more
nconclusive. However, all models achieve great fidelity level,
nd reward that is close to the DRL agent one. Considering high
erformance, differences in performance between models are
inor. Scores of the points that were on the global Pareto front
re presented in a tabular form in Appendix E.
Following the previous analysis, we conclude that MoËT and

oËTh models provide better performance (in terms of reward
and fidelity) compared to Viper in most of the cases, demonstrat-
ing that MoËT is a valuable technique to be considered when
looking for a verifiable RL policy.

Verification. We perform verification of MoËTh policies ob-
ained in our experiments according to the procedure described
n Section 5. All models considered in this experiment success-
ully pass the verification procedure. To better understand the
calability of our verification procedure, we report the verification
imes needed to verify policies for different number of experts
nd expert depths in Fig. 5. The verification times generally
ncrease with the number of experts. MoËTh policies with 2
xperts take from 5.5 s to 11.7s for verification, while the veri-
ication times for 8 experts can go up to as much as 336 s. This
orresponds to the complexity of the logical formula obtained
ith an increase in the number of experts. While the effect of
xpert depths on verification times is visible in a case of few
xperts, with the increase of experts it is less noticeable, thus
ndicating that the number of experts has more influence on the
erification times than expert depths. We run the verification on
ntel i7-7600, 2.80 GHz, 16 GB LPDDR3. We show example SMT
ormula (of Viper and MoËTh policies) in Appendix D.

Expressiveness. We provide a simple qualitative comparison
f best Viper and MoËTh policies, by contrasting them to DRL

policy on a CartPole environment. Fig. 6 visualizes these policies
and demonstrates that MoËTh policy much more closely resem-
bles the DRL policy thanks to its ability to represent hyperplanes
of arbitrary orientation, while DT policy obtained by Viper ap-
proximates DRL policy by axis perpendicular hyperplanes. The
MoËTh policy presented is equivalent to the following program:
if 2.18 ∗ cp+ 7.22 ∗ cv+ 20.64 ∗ pa+ 25.33 ∗ pv > −1 then go
ight else go left, where cp and cv are cart position and velocity,
nd pv and pa pole angle and its angular velocity.
Supervised learning. We evaluated the performance of MoËT
ndMoËTh in the supervised regime on three real-world datasets.

9

Table 2
For each dataset used in the experimental evaluation we provide its name,
the number of instances it contains (Size), numbers of instances per set after
splitting the data into training, validation, and testing sets (Split) and total
number of features (Features).
Dataset Size Split (train/test/val) Features

Adult income 48,842 34,189 / 6,783 / 6,784 14
German credit 1,000 700 / 150 / 150 10
Fetal health 2,126 1,488 / 319 / 319 21

Table 3
Prediction performance of classifiers—Fetal health dataset.
Model/metrics F1 score Accuracy

Decision tree 0.852 ± 0.004 0.939 ± 0.004
Lasso logistic regression 0.797 ± 0.000 0.915 ± 0.000
MoËTh 0.880 ± 0.001 0.950 ± 0.001
MoËT 0.891 ± 0.001 0.955 ± 0.001
Ridge logistic regression 0.739 ± 0.000 0.903 ± 0.000
SVC 0.762 ± 0.000 0.906 ± 0.000

Table 4
Prediction performance of classifiers—German credit dataset.
Model/metrics F1 score Accuracy

Decision tree 0.759 ± 0.000 0.637 ± 0.000
Lasso logistic regression 0.797 ± 0.000 0.667 ± 0.000
MoËTh 0.759 ± 0.003 0.638 ± 0.004
MoËT 0.808 ± 0.003 0.687 ± 0.004
Ridge logistic regression 0.792 ± 0.000 0.660 ± 0.000
SVC 0.799 ± 0.000 0.693 ± 0.000

Two datasets (German credit and Adult income) come from the
UCI ML repository (Frank, Asuncion, et al., 2010), whereas the
Fetal health dataset is a publicly available dataset that can be
found on Kaggle. We summarize the properties of the datasets
that we use in Table 2.

In the Adult income dataset (Kohavi, 1996) the goal is to predict
whether an income is greater than 50 K dollars. In the German
credit dataset, the goal is to classify bank account holders into
two classes—good or bad. In the Fetal health dataset, the goal is
to predict whether a fetus is healthy or not based on the features
extracted from cardiotocogram examination.

We compared MoËT with other supervised learning models
which would require similar effort and tools to be verified: deci-
sion tree, support vector classifier (SVC) with linear kernel, ridge
logistic regression and lasso logistic regression. The results are
evaluated by F1 score and accuracy. The hyperparameters of com-
pared models are tuned on validation set. The results evaluated
on test set with 95% confidence intervals for Fetal health, German
redit, and Adult income datasets are presented in Tables 3, 4,
nd 5, respectively. It can be observed that MoËT is the best

performing model with exception of SVC being better on German
credit data according to accuracy (but not F1 score). Therefore, it
can be concluded that MoËT can also be successfully applied in
the case of supervised learning problems.

7. Conclusion

We introduced MoËT, a technique based on MoE with decision
rees as experts and formulated a learning algorithm to train
oËT models. To the best of our knowledge, this approach is

he first to combine standard non-differentiable DT experts with
oE approach. Furthermore, we used MoËT in RL setting by
imicking DRL agents, in this way constructing RL policies that
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Fig. 6. Visualizing DRL (top), Viper (bottom left) and MoËTh (bottom right) policies on CartPole. X-axis represents pole angular velocity and y-axis cart velocity,
which are the most discriminatory features (topmost nodes in the Viper decision tree policy). Other features, cart position and pole angle, are set to 0 (center position
with pole upright). Gray color represents points where agent takes action left, and orange points when agent takes action right. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Table 5
Prediction performance of classifiers—Adult income dataset.
Model/metrics F1 score Accuracy

Decision tree 0.661 ± 0.003 0.852 ± 0.001
Lasso logistic regression 0.536 ± 0.000 0.820 ± 0.000
MoËTh 0.676 ± 0.000 0.854 ± 0.000
MoËT 0.674 ± 0.004 0.860 ± 0.001
Ridge logistic regression 0.529 ± 0.000 0.819 ± 0.000
SVC 0.406 ± 0.000 0.805 ± 0.000

can be verified and are more interpretable than the DRL agents
themselves. We showed a procedure to translate MoËT policies
into SMT logic providing rich means for verification, and showed
that MoËT models perform better than the previous state-of-the-
art approach Viper and that they are also useful in the supervised
regime.
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Appendix A. Viper algorithm

Viper algorithm is shown in Algorithm 2.
 j
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Appendix B. Environments

In this section we provide a brief description of environments
we used in our experiments. We used five environments from
OpenAI Gym: CartPole, Acrobot, Mountaincar, Lunarlander, Pong
and Pendulum.

B.1. CartPole

This environment consists of a cart and a rigid pole hinged
to the cart, based on the system presented by Barto, Sutton,
and Anderson (1983). At the beginning pole is upright, and the
goal is to prevent it from falling over. Cart is allowed to move
horizontally within predefined bounds, and controller chooses
to apply either left or right force to the cart. State is defined
with four variables: x (cart position), ẋ (cart velocity), θ (pole
angle), and θ̇ (pole angular velocity). Game is terminated when
the absolute value of pole angle exceeds 12◦, cart position is more
than 2.4 units away from the center, or after 200 successful steps;
whichever comes first. In each step reward of+1 is given, and the
ame is considered solved when the average reward is over 195
n over 100 consecutive trials.

.2. Acrobot

This environment is analogous to a gymnast swinging on a
orizontal bar, and consists of a two links and two joins, where
he joint between the links is actuated. The environment is based
n the system presented by Sutton (1996). Initially both links are
ointing downwards, and the goal is to swing the end-point (feet)
bove the bar for at least the length of one link. The state consists
f six variables, four variables consisting of sin and cos values of
he joint angles, and two variables for angular velocities of the
oints. The action is either applying negative, neutral, or positive
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Algorithm 2 Viper training (Bastani et al., 2018).

1: procedure Viper (MDP e, Teacher πt , Q-function Q πt , Iterations N)
2: Initialize dataset and student: D← ∅, πs0 ← πt
3: for i← 1 to N do
4: Sample trajectories and aggregate: D← D ∪ {(s, πt (s)) ∼ dπsi−1 (e)}
5: Sample dataset using Q values: Ds ← {(s, a) ∈ I ∼ D}
6: Train decision tree: πsi ← fit_tree(Ds)
7: return Best policy πs ∈ {πs1 , ..., πsN }.
torque on the joint. At each time step reward of −1 is received,
nd episode is terminated upon successful reaching the height,
r after 200 steps, whichever comes first. Acrobot is an unsolved
nvironment in that there is no reward limit under which is
onsidered solved, but the goal is to achieve high reward.

.3. Mountaincar

This environment consists of a car positioned between two
ills, with a goal of reaching the hill in front of the car. The
nvironment is based on the system presented by Moore (1990).
ar can move in a one-dimensional track, but does not have
nough power to reach the hill in one go, thus it needs to
uild momentum going back and forth to finally reach the hill.
ontroller can choose left, right or neutral action to apply left,
ight or no force to the car. State is defined by two variables,
escribing car position and car velocity. In each step reward of
1 is received, and episode is terminated upon reaching the hill,
r after 200 steps, whichever comes first. The game is considered
olved if average reward over 100 consecutive trials is no less
han −110.

.4. Lunarlander

This environment consists of a space ship and a landing pad,
o which the ship should land. Controller can choose when to
urn on the left engine, right engine or the main engine, thus
ontrolling the movement of the ship. State is defined by: x
nd y coordinates of the lander, vx and vy velocities in the x
nd y direction, θ angle of the lander, α angular velocity, and

two boolean values indicating if left or right leg is touching the
ground. Episode finishes when lander crashes or comes to rest,
after which it received appropriate reward. Firing main engine
is −0.3 points, and each leg contact is 10 points. The game is
considered solved if achieved reward is at least 200 points.

B.5. Pong

This is a classical Atari game of table tennis with two players.
Minimum possible score is −21 and maximum is 21.

.6. Pendulum

The environment consists of a pendulum, and the goal is to
wing it up so it stays upright. State is defined by: θ—angle of
the pendulum, and ω—angular velocity of the pendulum. Note
that the OpenAI gym environment instead of the state feature θ
ontains two features: x (which is equal to cos(θ )) and y (which
is equal to sin(θ )). Action available is applying torque to the pen-
dulum. In OpenAI gym action can take any value in range [−2, 2].
We discretize action space into 3 possible actions corresponding
to torque of −2, 0, or 2. In each step reward obtained is equal to
−(θ2 + 0.1cdotω2

+ 0.001 · torque2). Thus, the maximum reward
that can be obtained in a step is 0, which occurs when pendulum
is upright, with zero velocity, and 0 torque is applied to the

pendulum. Episode is of length 200.
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Appendix C. Model training parameters

C.1. DRL agent training

In this section we present the architectures and hyperparam-
eters used to train DRL agents for different environments.

For CartPole, we use policy gradient model as used in Viper.
While we use the same model, we had to retrain it from scratch
as the trained Viper agent was not available. We use 1 hidden
layer with 8 neurons. We set discount factor to 0.99, number of
epochs to 1000 and batch size to 50.

For Pong, we use a DQN network (Mnih et al., 2015) model
that is already trained (the same as used in Viper). This model
originates from the OpenAI baselines (OpenAI, 0000).

For Acrobot, Mountaincar and Lunarlander, we implement our
own version of dueling DQN network following (Wang et al.,
2015). We use 3 hidden layers with 15 neurons in each layer
for Mountaincar, and 50 neurons in each layer for Acrobot and
Lunarlander. We set the learning rate to 0.001, batch size to
30 in Mountaincar, 50 in Acrobot and Lunarlander, step size to
10,000 and number of epochs to 80,000 in Mountaincar, 50,000
in Acrobot and Lunarlander. We checkpoint a model every 5000
steps and pick the best performing one in terms of achieved
reward.

C.2. Viper and MoËT training

We used 40 iterations of DAgger, and 200,000 as a maximum
number of samples for training student policies. During evalua-
tion, cumulative reward is averaged across 100 runs in a given
environment (250 in a case of CartPole).

We trained Viper for varying value of the tree maximum
depth. The values used are: [1, 15] in CartPole, [1, 20] in Acrobot,
[1, 20] in Mountaincar, [1, 30] In Lunarlander, and [1, 35] in Pong.

We trained MoËT models for varying number of experts and
their maximum depths. The number of experts used are: [2, 8] in
CartPole, [2, 8] ∪ [15, 16] in Acrobot, [2, 8] ∪ {12, 16} in Moun-
taincar, [2, 8] in Lunarlander, and {2, 4, 8, 16, 32} in Pong. The
maximum depths of experts are: [0, 7] in CartPole, [0, 15] in Ac-
robot, [0, 11] in Mountaincar, [0, 20] in Lunarlander, and [0, 29]
in Pong. We used following learning rates for training MoËT
models: {1, 0.3, 0.1, 0.01, 0.001, 0.0001, 0.00001}, while for the
learning rate decay we used 1 (no decay) and 0.97 (learning rate
is multiplied by this value after each epoch). As for the maximum
number of epochs for MoËT training procedure we used values:
{50, 100, 500}.

C.3. Compute

To run our experiments we used a cluster with nodes of
the following configuration: Xeon CPU E5-2650 v3 (Haswell): 10
cores per socket (20 cores/node), 2.30 GHz, 128 GB DDR4-2133.
We used up to 10 such nodes when scheduling our experiments.
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Fig. D.7. Example CartPole MoËTh policy.

Fig. D.8. Example CartPole Viper policy.

Table E.6
CartPole: global Pareto front data.
Model Configuration Reward Fidelity

MoËT E2-D0 200.00 0.998

Appendix D. SMT translation example

The CartPole MoËTh policy presented in Fig. 6 is shown in
Fig. D.7. SMT formula that would encode the policy part (mapping
input to a model decision) of CartPole verification formula would
look as follows: If(2.18cp + 7.22cv + 20.64pa + 25.33pv > -
, 1, 0). This MoËTh policy consists of the gating expressed by

the inequality and two trivial expert decision trees of depth 0.
Therefore, the second and third part of the If formula are trivial.
In case that decision trees were nontrivial, those parts of the
formula would be expanded with nested if expressions.

A simple depth 2 Viper policy for CartPole is shown in Fig. D.8.
SMT formula that would encode the policy part of this formula
would look like following: If(pv < -0.033, If(pa < 0.039, 0,
1), If(pa < -0.037, 0, 1))

The full formula for CartPole environment verification contains
additional details, it is the conjunction of the formula encod-
ing the policy, the safety requirements and the environment
dynamics, as illustrated by the formula in Section 5.

Appendix E. Evaluation results

Tables E.6–E.11 show data about models on the global Pareto
front presented in Fig. 3 of Section 6.
12
Table E.7
Acrobot: Details of models on the Global Pareto front shown in Fig. 3.
Model Configuration Reward Fidelity

MoËT E16-D11 −72.12 0.936
MoËT E15-D11 −71.95 0.936
MoËT E15-D11 −71.81 0.921
MoËT E16-D9 −71.67 0.921
MoËT E16-D0 −69.83 0.916
MoËT E16-D0 −68.68 0.907

Table E.8
Mountaincar: Details of models on the Global Pareto front shown in Fig. 3.
Model Configuration Reward Fidelity

MoËTh E6-D9 −107.00 0.984
MoËT E6-D7 −106.83 0.984
MoËT E16-D7 −105.90 0.983
MoËT E7-D8 −104.28 0.982
MoËT E3-D7 −103.86 0.979
MoËT E3-D10 −103.82 0.977
MoËTh E3-D6 −103.77 0.977
MoËT E7-D5 −103.75 0.974
MoËT E3-D7 −103.22 0.973
Viper D12 −102.83 0.973
MoËT E2-D8 −102.45 0.972
Viper D11 −102.05 0.972
MoËTh E4-D4 −101.40 0.971
MoËT E5-D5 −101.09 0.966
MoËTh E8-D5 −100.97 0.962
MoËTh E4-D5 −100.96 0.961
MoËTh E2-D8 −100.95 0.961
MoËTh E4-D5 −98.85 0.960
MoËTh E4-D5 −98.70 0.950
MoËT E4-D4 −97.84 0.943
Viper D5 −97.46 0.938
MoËT E7-D2 −97.39 0.922
MoËT E4-D2 −96.96 0.914
MoËTh E6-D1 −96.78 0.912

Table E.9
Lunarlander: Details of models on the Global Pareto front shown in Fig. 3.
Model Configuration Reward Fidelity

MoËT E8-D17 204.13 0.792
MoËT E7-D17 210.79 0.767
MoËT E8-D17 217.33 0.765
MoËT E8-D17 225.24 0.755
MoËTh E8-D17 229.20 0.747
MoËT E6-D17 230.67 0.743
MoËTh E7-D0 239.96 0.666
MoËTh E7-D0 241.25 0.635
MoËT E6-D3 253.64 0.628
MoËTh E7-D0 261.86 0.547

Table E.10
Pong: Details of models on the Global Pareto front shown in Fig. 3.
Model Configuration Reward Fidelity

MoËT E16-D21 21.00 0.896

Table E.11
Pendulum: Details of models on the Global Pareto front shown in Fig. 3.
Model Configuration Reward Fidelity

MoËT E8-D16 −170.00 0.988
MoËTh E7-D17 −141.17 0.988
MoËT E4-D15 −134.06 0.988
MoËT E6-D13 −127.25 0.985
MoËTh E2-D12 −120.31 0.979

Tables E.12–E.17 show data about the models on the global
Pareto after re-evaluation is performed. This corresponds to data
presented in Fig. 4 of Section 6.
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Table E.12
CartPole: Details of models on the Global Pareto front shown in Fig. 4.
Model Configuration Reward Fidelity

MoËT E2-D0 200.00 0.998

Table E.13
Acrobot: Details of models on the Global Pareto front shown in Fig. 4.
Model Configuration Reward Fidelity

MoËT E15-D11 −76.31 0.923
MoËT E15-D11 −75.98 0.920
MoËT E16-D11 −75.81 0.934
MoËT E16-D9 −72.12 0.911
MoËT E16-D0 −70.67 0.909
MoËT E16-D0 −70.66 0.907

Table E.14
Mountaincar: Details of models on the Global Pareto front shown in Fig. 4.
Model Configuration Reward Fidelity

MoËT E3-D7 −108.52 0.970
MoËT E7-D8 −107.44 0.981
MoËT E16-D7 −107.00 0.981
MoËT E3-D7 −106.46 0.976
MoËT E3-D10 −106.44 0.976
MoËT E6-D7 −106.14 0.983
MoËTh E3-D6 −106.09 0.973
MoËTh E6-D9 −106.02 0.979
Viper D11 −105.82 0.968
MoËT E2-D8 −105.72 0.970
Viper D12 −105.43 0.969
MoËT E7-D5 −103.72 0.972
MoËTh E8-D5 −102.92 0.958
MoËTh E2-D8 −102.81 0.960
MoËT E5-D5 −101.83 0.961
MoËTh E4-D5 −101.75 0.960
MoËTh E4-D4 −101.17 0.968
MoËTh E6-D1 −99.82 0.906
MoËT E4-D2 −99.47 0.910
MoËT E4-D4 −99.37 0.936
MoËTh E4-D5 −99.28 0.956
MoËT E7-D2 −99.14 0.914
Viper D5 −98.20 0.937
MoËTh E4-D5 −97.88 0.950

Table E.15
Lunarlander: Details of models on the Global Pareto front shown in Fig. 4.
Model Configuration Reward Fidelity

MoËT E8-D17 178.93 0.762
MoËT E6-D17 180.40 0.751
MoËTh E8-D17 180.93 0.754
MoËT E8-D17 185.42 0.765
MoËT E7-D17 201.25 0.742
MoËT E8-D17 202.76 0.756
MoËTh E7-D0 232.45 0.660
MoËTh E7-D0 240.48 0.660
MoËTh E7-D0 247.97 0.537
MoËT E6-D3 256.90 0.588

Table E.16
Pong: Details of models on the Global Pareto front shown in Fig. 4.
Model Configuration Reward Fidelity

MoËT E16-D21 21.00 0.898

Table E.17
Pendulum: Details of models on the Global Pareto front shown in Fig. 4.
Model Configuration Reward Fidelity

MoËTh E2-D12 −177.01 0.976
MoËTh E7-D17 −169.55 0.988
MoËT E4-D15 −166.47 0.986
MoËT E6-D13 −146.85 0.982
MoËT E8-D16 −130.11 0.987
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