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Abstract

We present a method to formulate algorithm discovery as program search, and
apply it to discover optimization algorithms for deep neural network training. We
leverage efficient search techniques to explore an infinite and sparse program space.
To bridge the large generalization gap between proxy and target tasks, we also
introduce program selection and simplification strategies. Our method discovers
a simple and effective optimization algorithm, Lion (EvoLved Sign Momentum).
It is more memory-efficient than Adam as it only keeps track of the momentum.
Different from adaptive optimizers, its update has the same magnitude for each
parameter calculated through the sign operation. We compare Lion with widely
used optimizers, such as Adam and Adafactor, for training a variety of models
on different tasks. On image classification, Lion boosts the accuracy of ViT by
up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On
vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-
tuning accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%,
respectively. On diffusion models, Lion outperforms Adam by achieving a better
FID score and reducing the training compute by up to 2.3x. For autoregressive,
masked language modeling, and fine-tuning, Lion exhibits a similar or better
performance compared to Adam. Our analysis of Lion reveals that its performance
gain grows with the training batch size. It also requires a smaller learning rate
than Adam due to the larger norm of the update produced by the sign function.
Additionally, we examine the limitations of Lion and identify scenarios where its
improvements are small or not statistically significant.

1 Introduction

Optimization algorithms, i.e., optimizers, play a fundamental role in training neural networks.
There are a large number of handcrafted optimizers, mostly adaptive ones, introduced in recent
years [2, 3, 7, 27, 58, 105]. However, Adam [48] with decoupled weight decay [60], also referred to as
AdamW, and Adafactor with factorized second moments [86], are still the de facto standard optimizers
for training most deep neural networks, especially the recent state-of-the-art language [12, 23, 90],
vision [21, 26, 102] and multimodal [75, 84, 100] models.
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Table 1: Accuracy of BASIC-L [72] on ImageNet and several robustness benchmarks. We apply Lion
to both vision tower pre-training and vision-language contrastive training stages. The previous SOTA
results on zero-shot and fine-tuning ImageNet accuracy are 86.3% and 91.0% [100].

Optimizer Zero-shot Fine-tune
ImageNet V2 A R Sketch ObjectNet ImageNet

Adafactor 85.7 80.6 85.6 95.7 76.1 82.3 90.9
Lion 88.3 81.2 86.4 96.8 77.2 82.9 91.1

Figure 1: Left: ImageNet fine-tuning accuracy vs. pre-
training cost of ViT models on JFT-300M. Right: FID
of the diffusion model on 2562 image generation. We
use DDPM for 1K steps w/o guidance to decode image.
As a reference, the FID of ADM is 10.94 [24].

Program 1: Discovered optimizer Lion.
β1 = 0.9 and β2 = 0.99 by default are
derived from Program 4. It only tracks
momentum and uses the sign operation to
compute the update. The two gray lines
compute the standard decoupled weight
decay, where λ is the strength.
def train(weight, gradient, momentum, lr):
update = interp(gradient, momentum, β1)
update = sign(update)
momentum = interp(gradient, momentum, β2)
weight_decay = weight * λ

update = update + weight_decay
update = update * lr
return update, momentum

Another direction is to automatically discover such optimization algorithms. The learning to optimize
(L2O) approach proposes to discover optimizers by training parameterized models, e.g., neural
networks, to output the updates [1, 54, 63, 64]. However, those black-box optimizers, typically
trained on a limited number of small tasks, struggle to generalize to state-of-the-art settings where
much larger models are trained with significantly more training steps. Another line of methods [5, 95]
apply reinforcement learning or Monte Carlo Sampling to discover new optimizers, where the search
space is defined by trees composed from predefined operands (e.g., gradient and momentum) and
operators (e.g., unary and binary math operations). However, to make the search manageable, they
often limit the search space by using fixed operands and restricting the size of the tree, thereby limiting
the potential for discovery. For example, they are unable to modify the tracking of momentum or how
it contributes to the update, which is an essential component of Lion. Consequently, the algorithms
discovered have not yet reached the state-of-the-art. AutoML-Zero [80] is an ambitious effort that
attempts to search every component of a machine learning pipeline while evaluating on toy tasks.
This work follows the research direction of automatic discovering optimizers and is in particular
inspired by AutoML-Zero, but aims at discovering effective optimization algorithms that can improve
the state-of-the-art benchmarks.

In this paper, we present a method to formulate algorithm discovery as program search and apply
it to discover optimization algorithms. There are two primary challenges. The first one is to find
high-quality algorithms in the infinite and sparse program space. The second one is to further select
out the algorithms that can generalize from small proxy tasks to much larger, state-of-the-art tasks.
To tackle these challenges, we employ a range of techniques including evolutionary search with
warm-start and restart, abstract execution, funnel selection, and program simplification.

Our method discovers a simple and effective optimization algorithm: Lion. This optimizer differs
from various adaptive algorithms by only tracking momentum and leveraging the sign operation
to calculate updates, leading to lower memory overhead and uniform update magnitudes across all
dimensions. Despite its simplicity, Lion demonstrates outstanding performance across a range of
models (Transformer, MLP, ResNet, U-Net, and Hybrid) and tasks (image classification, vision-
language contrastive learning, diffusion, language modeling, and fine-tuning). Notably, we achieve
88.3% zero-shot and 91.1% fine-tuning accuracy on ImageNet by replacing Adafactor with Lion
in BASIC [72], surpassing the previous best results by 2% and 0.1%, respectively. Additionally,
Lion reduces the pre-training compute on JFT by up to 5x, improves training efficiency on diffusion
models by 2.3x and achieves a better FID score, and offers similar or better performance on language
modeling with up to 2x compute savings. Limitations of our work are discussed in Appendix N.
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Program 2: An example training loop,
where the optimization algorithm that
we are searching for is encoded within
the train function. The main inputs
are the weight (w), gradient (g) and
learning rate schedule (lr). The main
output is the update to the weight. v1
and v2 are two additional variables for
collecting historical information.
w = weight_initialize()
v1 = zero_initialize()
v2 = zero_initialize()
for i in range(num_train_steps):
lr = learning_rate_schedule(i)
g = compute_gradient(w, get_batch(i))
update, v1, v2 = train(w, g, v1, v2, lr)
w = w - update

Program 3: Initial pro-
gram (AdamW). The bias
correction and ϵ are omit-
ted for simplicity.
def train(w, g, m, v, lr):
g2 = square(g)
m = interp(g, m, 0.9)
v = interp(g2, v, 0.999)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = w * 0.01
update = update + wd
lr = lr * 0.001
update = update * lr
return update, m, v

Program 4: Discovered
program after search, se-
lection and removing re-
dundancies in the raw Pro-
gram 8 (Appendix). Some
variables are renamed for
clarity.
def train(w, g, m, v, lr):
g = clip(g, lr)
g = arcsin(g)
m = interp(g, v, 0.899)
m2 = m * m
v = interp(g, m, 1.109)
abs_m = sqrt(m2)
update = m / abs_m
wd = w * 0.4602
update = update + wd
lr = lr * 0.0002
m = cosh(update)
update = update * lr
return update, m, v

2 Symbolic Discovery of Algorithms

We present an approach that formulates algorithm discovery as program search [11, 49, 80]. We use
a symbolic representation in the form of programs for the following advantages: (1) it aligns with the
fact that algorithms must be implemented as programs for execution; (2) symbolic representations
like programs are easier to analyze, comprehend and transfer to new tasks compared to parameterized
models such as neural networks; (3) program length can be used to estimate the complexity of
different programs, making it easier to select the simpler, often more generalizable ones. This work
focuses on optimizers for deep neural network training, but the method is generally applicable.

2.1 Program Search Space

We adhere to the following three criteria while designing the program search space: (1) the search
space should be flexible enough to enable the discovery of novel algorithms; (2) the programs should
be easy to analyze and incorporate into a machine learning workflow; (3) the programs should focus
on the high-level algorithmic design rather than low-level implementation details. We define the
programs to contain functions operating over n-dimensional arrays, including structures like lists and
dictionaries containing such arrays, in an imperative language. They are similar to Python code using
NumPy / JAX [10, 36] as well as pseudo code of optimization algorithms. The details of the design
are outlined below, with an example representation of AdamW in Program 3.

Input / output signature The program defines a train function, which encodes the optimization
algorithm being searched for, where the main inputs are the model weight (w), the gradient (g) and
the learning rate schedule value (lr) at the current training step. The main output is the update to
the weight. The program also incorporates extra variables initialized as zeros to collect historical
information during training. For example, AdamW requires two extra variables to estimate first
and second moments. Note that those variables can be used arbitrarily, we use the name m and v
in Program 3 just for better readability. This simplified code snippet in Program 2 uses the same
signature as AdamW to ensure that the discovered algorithms have smaller or equal memory footprints.
As opposed to previous optimizer search attempts [5, 95], our method allows discovering better ways
of updating the extra variables.

Building blocks The train function consists of a sequence of assignment statements, with no
restrictions on the number of statements or local variables. Each statement calls a function using
constants or existing variables as inputs, and the resulting value is stored in a new or existing variable.
For the program, we select 45 common math functions, most of which corresponds to a function in
NumPy or an operation in linear algebra. Some functions are introduced to make the program more
compact, such as the linear interpolation function interp(x, y, a), which is made equivalent to
(1 - a) * x + a * y. Preliminary experiments have investigated the inclusion of more advanced
features such as conditional and loop statements, and defining and calling new functions, but these
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Figure 2: Left: We run hyperparameter tuning on AdamW and random search, both with 4x more
compute, to get the best results as two baselines (green and red lines). The evolutionary search, with
mean and standard error calculated from five runs, significantly outperforms both of them. The use
of multiple restarts from the initial program is crucial due to the high variance in the search fitness
(blue curves), and restarting from the best program after 300K progress further improves the fitness
(orange curves) when the original search plateaus. Right: Example curves of search fitness, the cache
hit rate, and the percentage of redundant statements. The cache hit rate and the redundant statements
percentage increase along with the search progress to ∼90% and ∼70%.

do not yield improved results, so we leave them out. A detailed description of the functions are
summarized in Appendix H. When necessary, the types and shapes of the function arguments are
automatically cast, e.g., in the case of adding a dictionary of arrays to a scalar.

Mutations and redundant statements The design of mutations utilized in evolutionary search is
tightly intertwined with the representation of the program. We include three types of mutations: (1)
inserting a new statement at a random location with randomly chosen functions and arguments, (2)
deleting a random chosen statement, and (3) modifying a random statement by randomly altering
one of its function arguments, which may be either variables or constants. To mutate an argument,
we replace it with an existing variable or a newly generated constant obtained by sampling from a
normal distribution X ∼ N (0 1). Additionally, we can mutate an existing constant by multiplying
it by a random factor 2a, where a ∼ N (0 1). These constants serve as tunable hyperparameters
in the optimization algorithm, such as the peak learning rate and weight decay in AdamW. The
modification mutation makes it easier for the search to tune those constants while keeping most
of the program unchanged. Note that we allow a program to include redundant statements during
search, i.e., statements that do not impact the final program outputs. This is necessary as mutations
are limited to only affecting a single statement. Redundant statements therefore serve as intermediate
steps towards bigger changes.

Infinite and sparse search space Given the limitless number of statements and local variables, as
well as the presence of mutable constants, the program search space is infinite. Even if we ignore the
constants and bound the program length and number of variables, the number of potential programs
is still intractably large. More importantly, the challenge comes from the sparsity of high-performing
programs in the search space. To illustrate this point, we evaluates 2M randomly sampled programs
on a low-cost proxy task. The best program among them is still significantly inferior to AdamW.

2.2 Efficient Search Techniques

We employ the following techniques to address the challenges posed by the infinite and sparse space.

Evolution with warm-start and restart We apply regularized evolution as it is simple, scalable,
and has shown success on many AutoML search tasks [42, 79, 80, 87, 99]. It keeps a population
of P algorithms that are gradually improved through cycles. Each cycle picks T<P algorithms at
random and the best performer is chosen as the parent, i.e., tournament selection [32]. This parent is
then copied and mutated to produce a child algorithm, which is added to the population, while the
oldest algorithm is removed. Normally, evolutionary search starts with random candidates, but we
warm-start the initial population as AdamW to accelerate the search. By default, we use a tournament
size of two and a population size of 1K. To further improve the search efficiency, we apply two
types of restart: (1) restarting from the initial program, which can lead to different local optima due
to the randomness in evolution and encourage exploration. This can be done by running multiple
searches in parallel. (2) restarting from the best algorithm found thus far to further optimize it,
encouraging exploitation. Figure 2 (Left) displays the mean and standard error of five evolutionary
search experiments. We run hyperparameter tuning based on AdamW by only allowing mutations of
constants in the evolution, and run random search by sampling random programs, both with 4x more
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compute. Our search significantly outperforms the best results from both baselines, shown as the
two dashed lines. The high variance in the search fitness necessitates running multiple repeats by
restarting from the initial program. When the search fitness plateaus after ∼300K progress, restarting
from the best program found thus far further improves the fitness shown by the orange curve.

Pruning through abstract execution We propose to prune the redundancies in the program space
from three sources: programs with syntax or type / shape errors, functionally equivalent programs,
and redundant statements in the programs. Before a program is actually executed, we perform an
abstract execution step that (1) infers variable types and shapes to detect programs with errors; (2)
produces a hash that uniquely identifies how the outputs are computed from the inputs, allowing us to
cache and look up semantically duplicate programs [31]; (3) identifies redundant statements that can
be ignored during actual execution and analysis. For instance, Program 4 is obtained after removing
all redundant statements in Program 8 (Appendix). Abstract execution has negligible cost compared
to the actual execution, with each input and function replaced by customized values, e.g., hash. See
Appendix I for details of abstract execution. Preliminary experiments have shown that the search
process can become overwhelmed with invalid programs and cannot make progress without filtering
out invalid programs. As seen in Figure 2 (Right), the percentage of redundant statements and cache
hit rate both increase as the search proceeds. Based on five search runs, each covering 300K programs,
there are 69.8 ± 1.9% redundant statements towards the end, implying that redundant statements
removal makes the program ∼3x shorter on average. The cache hit rate is 89.1± 0.6%, indicating
that using the hash table as cache brings ∼10x reduction on the search cost.

Proxy tasks and search cost To reduce search cost, we create low-cost proxies by decreasing the
model size, number of training examples, and steps from the target tasks. Evaluation on the proxies
can be completed on one TPU V2 chip within 20min. We use the accuracy or perplexity on the
validation set as the fitness. Each search experiment utilizes 100 TPU V2 chips and runs for ∼72h.
There are a total of 200-300K programs generated during each search experiment. However, the
number of programs that are actually evaluated is around 20-30K, thanks to the use of the cache
through abstract execution. To incorporate restart, we start five repeats of search experiments,
followed by another round of search initializing from the best algorithm found thus far. This results
in a total cost of ∼3K TPU V2 days. See Appendix F for the details of proxy tasks.

2.3 Generalization: Program Selection and Simplification

The search experiments can discover promising programs on proxy tasks. We use performance on
meta-validation tasks that are larger than the proxy tasks by increasing the model size and training
steps, to select the programs that generalize beyond proxy tasks then further simplify them. The
phenomenon of meta-overfitting occurs when the search fitness keeps growing, but the meta-validation
metric declines, indicating that the discovered algorithms have overfit the proxy tasks. Two examples
meta-validation curves are shown in Figure 11 (Left) in the Appendix.

Large generalization gap The discovered algorithms face a significant challenge due to the substan-
tial gap between the proxy tasks during search and the target tasks. While proxy tasks can typically
be completed within 20min on one TPU V2 chip, target tasks can be > 104x larger and require days
of training on 512 TPU V4 chips. Furthermore, we expect the optimizer to perform well on different
architectures, datasets and even different domains, so the discovered algorithms need to show strong
out-of-distribution generalization. The sparse search space and inherent noise in the evolution process
further compound this challenge, leading to inconsistent generalization properties between different
runs. Our observation suggests that evolutionary search runs that meta-overfit later tend to uncover
optimization algorithms that generalize better. See more details in Figure 11 (Right) in the Appendix.

Funnel selection To mitigate the generalization gap, we collect promising programs based on search
fitness and add an extra selection step using a series of meta-validation tasks to select those generalize
better. To save compute, we apply a funnel selection process that gradually increases the scale of
the meta-validation tasks. For example, starting with proxy task A, we create a 10x larger task B
by increasing the model size and the training steps. Only algorithms that surpass the baseline on
task B will be evaluated on task C, which is 100x larger. This approach allows us to gradually filter
out algorithms that show poor generalization performance, ultimately leading to the selection of
algorithms that generalize well to larger tasks.
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Simplification Simpler programs are easier to understand and our intuition is that they are more likely
to generalize, so we simplify the programs with the following steps. Firstly, we remove redundant
statements that do not contribute to the final output as identified through abstract execution. Secondly,
we remove statements that are non-redundant but produce minimal differences when removed. This
step can also be achieved through evolution by disabling the insertion of new statements in the
mutation process. Finally, we rearrange the statements manually, assign clear and descriptive names
to variables, and convert the program into its simpler, mathematically equivalent form.

3 Derivation and Analysis of Lion

We arrive at the Lion optimizer due to its simplicity, memory efficiency, and strong performance in
search and meta-validation. The search also discovers other algorithms shown in Appendix D, e.g.,
some with better regularization and some resembling AdaBelief [105] and AdaGrad [29].

3.1 Derivation

The search and funnel selection process lead to Program 4, which is obtained by automatically
removing redundant statements from the raw Program 8 (in the Appendix). We further simplify
it to get the final algorithm (Lion) in Program 1. Several unnecessary elements are removed from
Program 4 during the simplification process. The cosh function is removed since m would be
reassigned in the next iteration (line 3). The statements using arcsin and clip are also removed
as we observe no quality drop without them. The three red statements translate to a single sign
function. Although both m and v are utilized in Program 4, v only changes how the momentum is
updated (two interp functions with constants ∼0.9 and ∼1.1 is equivalent to one with ∼0.99) and
does not need to be separately tracked. Note that the bias correction is no longer needed, as it does
not change the direction. Algorithm 2 in the Appendix shows the pseudocode.

3.2 Analysis

Sign update and regularization The Lion algorithm produces update with uniform magnitude
across all dimensions by taking the sign operation, which is in principle different from various
adaptive optimizers. Intuitively, the sign operation adds noise to the updates, which acts as a form of
regularization and helps with generalization [16, 30, 67]. An evidence is shown in Figure 9 (Right) in
the Appendix, where the ViT-B/16 trained by Lion on ImageNet has a higher training error compared
to AdamW but a 2% higher accuracy on the validation set (as shown in Table 8 from the Appendix).
Additionally, the results in Appendix G demonstrate that Lion leads to the convergence in smoother
regions, which usually results in better generalization.

Momentum tracking The default EMA factor used to track the momentum in Lion is 0.99 (β2),
compared to the commonly used 0.9 in AdamW and momentum SGD. The current gradient and
momentum are interpolated with a factor of 0.9 (β1) before the sign operation is applied. This choice
of EMA factor and interpolation allows Lion to balance between remembering a ∼10x longer history
of the gradient in momentum and putting more weight on the current gradient in the update. The
necessity of both β1 and β2 is further discussed in Appendix L.

Hyperparameter and batch size choices Lion is simpler and has fewer hyperparameters compared
to AdamW and Adafactor as it does not require ϵ and factorization-related ones. The update is an
element-wise binary ±1 if we omit the weight decay term, with larger norm than those produced by
other optimizers like SGD and adaptive algorithms. As a result, Lion needs a smaller learning rate
and in turn a larger decoupled weight decay to achieve a similar effective weight decay strength (lr
* λ). Detailed information on tuning Lion can be found in Appendix M. Additionally, the advantage
of Lion over AdamW enlarges as the batch size increases, which fits the common practice of scaling
up model training through data parallelism (Appendix L).

Memory and runtime benefits Lion only saves the momentum thus has smaller memory footprint
than popular adaptive optimizers like AdamW, which is beneficial when training large models and / or
using a large batch size. As an example, AdamW needs at least 16 TPU V4 chips to train a ViT-B/16
with image resolution 224 and batch size 4,096, while Lion only needs 8 (both with bfloat16
momentum). Another practical benefit is that Lion has faster runtime (steps / sec) in our experiments
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due to its simplicity, usually 2-15% speedup compared to AdamW and Adafactor depending on the
task, codebase, and hardware.

Relation to existing optimizers The sign operation has been explored in previous optimizers [7, 83].
The closest to ours is the handcrafted optimizer signSGD [7] (and its momentum variant) that also
utilizes the sign operation to calculate the update but has a different momentum update rule from
Lion. Their focus is to mitigate communication costs between agents in distributed training, and they
observe inferior performance when training ConvNets on image classification tasks. On the other
hand, NAdam [27] combines the updated first moment and the gradient to compute the update, but
Lion decouples the momentum tracking and how it is applied to the update through β2. A comparison
of Lion with related optimizers can be found in Appendix K.

4 Evaluation of Lion

In this section, we present evaluations of Lion, on various benchmarks. We mainly compare it to
AdamW (or Adafactor when memory is a bottleneck) as it is exceedingly popular and the de facto
standard optimizer on a majority of learning tasks. The result of momentum SGD is only included for
ResNet since it performs worse than AdamW elsewhere. We also benchmark other popular optimizers
in Appendix K, including handcrafted and automatically discovered ones. We make sure that every
optimizer is well-tuned for each task (see Appendix M for tuning details). By default, the learning
rate schedule is cosine decay with 10K steps warmup, and the momentum is saved as bfloat16 to
reduce the memory footprint. Ablations studies are performed in Appendix L.

4.1 Image Classification

We perform experiments including various datasets and architectures on the image classification task
(see Appendix B for dataset details). Apart from training from scratch on ImageNet, we also pre-train
on two larger well-established datasets, ImageNet-21K and JFT [89]. The image size is 2242 by
default otherwise specified by the subscript.

Train from scratch on ImageNet Following previous works [26, 37], we train ResNet-50 for 90
epochs with a batch size of 1,024, and other models for 300 epochs with a batch size of 4,096. As
shown in Table 8 (in the Appendix), Lion significantly outperforms AdamW on various architectures.
Empirically, the improvement is more substantial on models with larger capacity, with accuracy
increases of 1.96% and 0.58% for ViT-B/16 and ViT-S/16, respectively. The performance gaps also
tend to enlarger with fewer inductive biases. When strong augmentations are applied, the gain of
Lion over AdamW shrinks, but it still outperforms AdamW by 0.42% on CoAtNet-3, despite the
strong regularization during training [21].

Pre-train on ImageNet-21K We pre-train ViT-B/16 and ViT-L/16 on ImageNet-21K for 90 epochs
with a batch size of 4,096. Table 8 shows that Lion surpasses AdamW when the training set is
enlarged for 10x. The gaps on larger models are bigger, with +0.52% vs. +0.33% (ImageNet),
+0.57% vs. +0.23% (ReaL), and +0.74% vs. +0.25% (V2) for ViT-L/16 and ViT-B/16, respectively.

Pre-train on JFT To push the limit, we conduct extensive experiments on JFT. We follow the settings
of Dosovitskiy et al. [26] and Zhai et al. [102] for both pre-training and fine-tuning. Figure 1 (Left)
and 3 present the accuracy of three ViT models (ViT-B/16, ViT-L/16, and ViT-H/14) under different
pre-training budgets on JFT-300M. Lion enables the ViT-L/16 to match the performance of ViT-H/14
trained by AdamW on ImageNet and ImageNet V2 but with 3x less pre-training cost. On ImageNet
ReaL, the compute saving further becomes 5x. Another evidence is that even when a ViT-L/16 is
trained by AdamW for 4M steps by Zhai et al. [102], its performance still lags behind the same model
trained by Lion for 1M steps.

Table 5 in the Appendix shows the fine-tuning results, with higher resolution and EMA. Our ViT-L/16
matches the previous ViT-H/14 results trained by AdamW, while being 2x smaller. The advantage
is larger on more challenging benchmarks, such as +1.33% (V2), +6.08% (A), +5.54% (R) for ViT-
L/16. When pretrained on JFT-3B, the ViT-g/14 trained by Lion outperforms the previous ViT-G/14
results [102], with 1.8x fewer parameters. Our ViT-G/14 achieves a 90.71% accuracy on ImageNet.
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Figure 3: ImageNet ReaL (Left) and ImageNet V2
(Right) accuracy after we pre-train ViT models on
JFT-300M then fine-tune on ImageNet. See Table 4
(in the Appendix) for the detailed numbers.

Table 2: Zero-shot accuracy of LiTs on Im-
ageNet, CIFAR-100, and Oxford-IIIT Pet.
As a reference, the zero-shot accuracy of
CLIP [75] on ImageNet is 76.2%.

Model Optimizer ImageNet C100 Pet

LiT-B/32-B AdamW 68.78 71.41 86.62
Lion 69.88 71.78 87.36

LiT-B/16-B AdamW 74.26 72.25 89.83
Lion 75.39 72.49 91.20

LiT-g/14288-L AdamW 83.43 80.93 94.88
Lion 84.09 81.43 95.86

Table 3: One-shot evaluation averaged over three NLG and 21 NLU tasks. The results of GPT-3 [12]
and PaLM [17] are included for reference. The LLMs trained by Lion have better in-context learning
ability. See Table 11 (in the Appendix) for detailed results on all tasks.

Task 1.1B 2.1B 7.5B 6.7B
GPT-3

8B
PaLMAdafactor Lion Adafactor Lion Adafactor Lion

#Tokens 300B 300B 780B

Avg NLG 11.1 12.1 15.6 16.5 24.1 24.7 23.1 23.9
Avg NLU 53.2 53.9 56.8 57.4 61.3 61.7 58.5 59.4

4.2 Vision-Language Contrastive Learning

This section focuses on the vision-language contrastive training [75]. We compare Lion with AdamW
(Adafactor) on zero-shot image classification and image-text retrieval benchmarks. We initialize the
image encoder with a strong pre-trained model as it is suggested to be more efficient [103].

Locked-image text Tuning (LiT) We perform a comparison between Lion and AdamW on LiT [103]
by training the text encoder [103] in a contrastive manner using the same frozen pre-trained ViT. All
models are trained for 1B image-text pairs with a batch size of 16,384. Table 2 shows the zero-shot
image classification results on three model scales, with the name specifies the size, e.g., LiT-B/16-B
denotes a ViT-B/16 and a base size Transformer as the text encoder. Our method, Lion, demonstrates
consistent improvement over AdamW with gains of +1.10%, +1.13%, and +0.66% on zero-shot
ImageNet accuracy for LiT-B/32-B, LiT-B/16-B, and LiT-g/14288-L, respectively. Figure 7 (Left)
in the Appendix depicts an example zero-shot learning curve of LiT-B/16-B. Similar results are
obtained on the other two datasets. The zero-shot image-text retrieval results on MSCOCO [56] and
Flickr30K [74] can be found in Figure 6 (in the Appendix). The evaluation metric is Recall@K,
calculated based on if the ground truth label of the query appears in the top-K retrieved examples.
Lion outperforms AdamW on both datasets, with a larger gain in Recall@1 than Recall@10 on
Flicker30K, implying more accurate retrieval results: +1.70% vs. +0.60% for image→ text and
+2.14% vs. +0.20% for text→ image.

BASIC Pham et al. [72] propose to scale up batch size, dataset, and model size simultaneously,
achieving drastic improvements over CLIP. It uses a sophisticated CoAtNet [21] pre-trained on
JFT-5B as the image encoder. Furthermore, the contrastive training is performed on 6.6B image-text
pairs with a larger 65,536 batch size. To push the limit, we only experiment on the largest BASIC-L,
and use Lion on both image encoder pre-training and contrastive learning stages. As illustrated in
Table 1, we achieve a significant 2.6% gain over the baseline, striking a 88.3% accuracy on zero-shot
ImageNet classification. Note that this result is 2.0% higher than the previous best result [100]. The
performance gain is consistent on five other robustness benchmarks. After fine-tuning the image
encoder (CoAtNet-7) in BASIC-L obtained by Lion, we further achieve a 91.1% top-1 accuracy on
ImageNet, which is 0.1% better than the previous SOTA.

4.3 Diffusion Model

Recently, diffusion models achieve a huge success on image generation [24, 40, 41, 84, 88], so we test
the performance of Lion on unconditional image synthesis and multimodal text-to-image generation.
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Figure 4: Imagen text-to-image 642 (Left) and
the 642 → 2562 diffusion models (Right).

Figure 5: Log perplexity on Wiki-40B (Left)
and PG-19 (Right). The speedup brought by
Lion tends to increase with the model scale. The
largest model on Wiki-40B is omitted as we ob-
serve severe overfitting.

Image synthesis on ImageNet We utilize the improved U-Net architecture [24] and perform 64× 64,
128× 128, and 256× 256 image generation on ImageNet. The batch size is 2,048 and the learning
rate remains constant throughout training. For decoding, we apply DDPM [41] for 1K sampling
steps without classifier-free guidance. The evaluation metric is the standard FID score. Illustrated by
Figure 1 (Right) and Figure 7 (Middle and Right) in the Appendix, Lion enables both better quality
and faster convergence on the FID score. The gap between Lion and AdamW increases with the
image resolution, where the generation becomes more challenging. When generating 256 × 256
images, Lion achieves the final performance of AdamW with 2.3x fewer steps. The final FID scores
are 4.1 (Lion) vs. 4.7 (AdamW). For reference, the FID of ADM [24] is 10.94.

Text-to-image generation We follow the Imagen [84] setup to train a base 64× 64 text-to-image
model and a 64 × 64 → 256 × 256 super-resolution model. All models are trained on a high-
quality internal image-text dataset with a batch size of 2,048 and a constant learning rate. Due to
computational constraints, our base U-Net has a width of 192 compared to 512 in the original 2B
model, while the 600M super-resolution model is identical to the original Imagen setup. Along with
the training, 2K images are sampled from the MSCOCO [56] validation set for real-time evaluation.
We use the CLIP score to measure image-text alignment and the zero-shot FID-30K to measure image
fidelity. Classifier-free guidance [40] with a weight of 5.0 is applied as it has been shown to improve
image-text alignment. Figure 4 depicts the learning curve. While there is no clear improvement on
the base 64× 64 model, Lion outperforms AdamW on the text-conditional super-resolution model. It
achieves a higher CLIP score and has a less noisy FID metric compared to AdamW.

4.4 Language Modeling and Fine-tuning

This section focuses on language modeling and fine-tuning. On language-only tasks, we find that
tuning β1 and β2 can improve the quality for both AdamW and Lion. See Appendix M for tuning
details. The masked language modeling and fine-tuning results are shown in Appendix J.

Autoregressive language modeling We first experiment on two smaller-scale academic datasets
Wiki-40B [34] and PG-19 [76]. The employed Transformer spans three scales: small (110M),
medium (336M), and large (731M). The architecture details can be found in Appendix E. All models
are trained with 218 tokens per batch for 125K steps, with a learning rate schedule of 10K steps
warmup followed by linear decay. The context length is set to 512 for Wiki-40B and 1,024 for PG-19.
Figure 5 illustrates the token-level perplexity for Wiki-40B and word-level perplexity for PG-19. Lion
consistently achieves lower validation perplexity than AdamW. It achieves 1.6x and 1.5x speedup
when training the medium size model on Wiki-40B and PG-19, respectively. When the model is
increased to the large size, the speedup on PG-19 further increases to 2x.

We then conduct larger experiments with the pre-training dataset similar to GLaM [28]. Following
GPT-3 [12], we train three models, from 1.1B to 7.5B parameters, on 300B tokens with a batch size
of 3M tokens and a context length of 1K. We evaluate them on three natural language generative
(NLG) and 21 natural language understanding (NLU) tasks (see Appendix C for details). We observe
no difference in perplexity throughout training. Nevertheless, Lion outperforms Adafactor on the
average in-context learning ability, as shown in Table 3. Our 7.5B baseline model, trained for 300B
tokens, outperforms the 8B PaLM, trained for 780B tokens, demonstrating the strength of our setup.
Lion outperforms Adafactor on both NLG and NLU tasks, particularly on the NLG tasks, with an
exact match improvement of +1.0, +0.9, and +0.6 for the 1.1B, 2.1B, and 7.5B models, respectively.
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5 Related Work

Our work lies in the area of AutoML and meta-learning that includes learning to learn [1, 5, 63, 64,
78, 96, 97], neural architecture search [14, 15, 57, 71, 79, 87, 93, 94, 98, 106] and hyperparameter
optimization [25, 43, 44, 55], etc. There is also a long history of using evolutionary methods to
search for programs, i.e., genetic programming [11, 42, 49]. Our approach builds upon a symbolic
search space similar to AutoML-Zero [70, 80]. However, instead of discovering programs with fixed
dimensional matrices, vector, and scalars for toy tasks, our goal is to develop programs that operate
on n-dimensional arrays and can generalize to state-of-the-art tasks. Other related works include
numerous handcrafted optimizers [2, 7, 27, 29, 35, 48, 58, 61, 82, 83, 86, 105].

6 Conclusion

This paper aims at discovering optimization algorithms via program search. Despite the challenges
from an infinite and sparse space, and large generalization gap between the proxy and target tasks,
our method discovers a simple and effective optimizer, Lion, that is memory-efficient and achieves
strong generalization across architectures, datasets and tasks.
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Table 4: Model performance when pre-trained on JFT-300M then fine-tuned on ImageNet. Those
numbers correspond to Figure 1 (Left) and Figure 3. The fine-tuning resolution is 3842 for ViT-B/16
and ViT-L/16, and 3922 for ViT-H/14. Following Dosovitskiy et al. [26], Polyak averaging is not
applied here.

Model #Params Epochs / Steps Optimizer ImageNet ReaL V2 A R

ViT-B/16384 86.86M 7 / 517,791 AdamW 84.24 89.04 74.89 27.39 53.71
Lion 84.72 89.14 75.83 29.65 55.86

ViT-L/16384 304.72M
7 / 517,791 AdamW 86.69 89.95 78.03 40.55 64.47

Lion 87.32 90.43 79.29 47.13 68.49

14 / 1,035,583 AdamW 87.29 90.11 78.91 42.56 64.34
Lion 88.09 90.62 80.48 51.55 70.72

ViT-H/14392 632.72M 14 / 1,035,583 AdamW 88.02 90.27 80.10 53.14 69.48
Lion 88.78 90.68 81.41 58.21 73.09

Table 5: Model performance when pre-trained on JFT then fine-tuned on ImageNet. Two giant ViT
models are pre-trained on JFT-3B while smaller ones are pre-trained on JFT-300M. The ViT-G/14
results are directly from Zhai et al. [102].

Model ViT-L/16512 ViT-H/14518 ViT-g/14518 ViT-G/14518

#Params 305.18M 633.47M 1.04B 1.88B
Optimizer AdamW Lion AdamW Lion Adafactor Lion Adafactor Lion

ImageNet 87.72 88.50 88.55 89.09 90.25 90.52 90.45 90.71 / 90.71⋆

ReaL 90.46 90.91 90.62 91.02 90.84 91.11 90.81 91.06 / 91.25⋆

V2 79.80 81.13 81.12 82.24 83.10 83.39 83.33 83.54 / 83.83⋆

A 52.72 58.80 60.64 63.78 - - - -
R 66.95 72.49 72.30 75.07 - - - -
⋆ We observe overfitting in fine-tuning, therefore report both the last and oracle results.

A Pseudocode for AdamW and Lion

Algorithm 1 AdamW Optimizer

given β1, β2, ϵ, λ, η, f
initialize θ0, m0 ← 0, v0 ← 0, t← 0
while θt not converged do

t← t+ 1
gt ← ∇θf(θt−1)
update EMA of gt and g2t
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

bias correction
m̂t ← mt/(1− βt

1)
v̂t ← vt/(1− βt

2)
update model parameters
θt ← θt−1 − ηt(m̂t/(

√
v̂t + ϵ) + λθt−1)

end while
return θt

Algorithm 2 Lion Optimizer (ours)

given β1, β2, λ, η, f
initialize θ0, m0 ← 0
while θt not converged do

gt ← ∇θf(θt−1)
update model parameters
ct ← β1mt−1 + (1− β1)gt
θt ← θt−1 − ηt(sign(ct) + λθt−1)
update EMA of gt
mt ← β2mt−1 + (1− β2)gt

end while
return θt

B Image Classification Tasks

Our evaluation covers various benchmarks: ImageNet, ImageNet ReaL [8], ImageNet V2 [81],
ImageNet A [39], ImageNet R [38], ImageNet Sketch [92], ObjectNet [4], CIFAR-100 [50], and
Oxford-IIIT Pet [69].
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Figure 6: Zero-shot image-text retrieval results on MSCOCO (Top) and Flickr30K (Bottom) for
LiT-B/16-B. Recall@K is calculated based on if the ground truth label of the query appears in the
top-K retrieved examples.

C NLP Tasks

This section shows all the natural language generation (NLG) and natural language understanding
(NLU) tasks where we evaluate the large-scale language models in Section 4.4. Those tasks include
Open-Domain Question Answering, Cloze and Completion Tasks, Winograd-Style Tasks, Common
Sense Reasoning, In-Context Reading Comprehension, SuperGLUE, and Natural Language Inference.

• NLG: TriviaQA [45], Natural Questions [51], Web Questions [6].

• NLU: HellaSwag [101], StoryCloze [66], Winograd [53], Winogrande [85], RACE [52],
PIQA [9], ARC [19], OpenbookQA [65], BoolQ [18], Copa [33], RTE [20], WiC [73],
Multirc [47], WSC [53], ReCoRD [104], CB [22], Adversarial NLI [68].

Program 5: Algorithm with
a better regularization. It dy-
namically calculates the dot
product between the weight
and gradient, before comput-
ing the weight decay.
def train(w, g, m, v, lr):
m = interp(m, g, 0.16)
g2 = square(g)
v = interpolate(v, g2, 0.001)
v753 = dot(g, w)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = v753 * w
update = sin(update)
update = update + wd
lr = lr * 0.0216
update = update * lr
v = sin(v)
return update, m, v

Program 6: Algorithm
that tracks the second mo-
ment without EMA de-
cay, which is the same as
AdaGrad.
def train(w, g, m, v, lr):
m = interp(m, g, 0.1)
g2 = square(g)
g2 = v + g2
v = interp(v, g2, 0.0015)
sqrt_v = sqrt(v)
update = m / sqrt_v
v70 = get_pi()
v = min(v, v70)
update = sinh(update)
lr = lr * 0.0606
update = update * lr
return update, m, v

Program 7: Algorithm
uses the difference be-
tween gradient and mo-
mentum to track the sec-
ond moment, resembling
AdaBelief.
def train(w, g, m, v, lr):
m = interp(m, g, 0.1)
g = g - m
g2 = square(g)
v = interp(v, g2, 0.001)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = w * 0.0238
update = update + wd
lr = lr * 0.03721
update = update * lr
return update, m, v

D Other Discovered Programs

By varying the task setting, different types of algorithms can be discovered. For example, if we
reduce the amount of data in the proxy task, we are more likely to discover algorithms with better
regularization (Program 5), and if we reduce the search progress, we are likely to find simple
variants of AdamW (Program 6 and 7). Future work can explore this potential to discover optimizers
specialized for different tasks.
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Figure 7: The zero-shot ImageNet accuracy curve of LiT-B/16-B (Left). FID comparison on 64× 64
(Middle) and 128× 128 (Right) image generation when training diffusion models.

Table 6: Architecture details for language modeling.

Model #Params nlayers dmodel nheads dhead

Small-scale

Small 110M 12 768 12 64
Medium 336M 24 1024 16 64
Large 731M 24 1536 16 96

Large-scale

1.1B 1.07B 24 1536 16 96
2.1B 2.14B 32 2048 16 128
7.5B 7.49B 32 4096 32 128

Table 7: Training error Ltrain and
landscape flatness LN

train of ViT-B/16
trained from scratch on ImageNet.

Optimizer AdamW Lion

ImageNet 75.48 77.44
ReaL 80.64 82.57
V2 61.87 64.81

Ltrain 0.61 0.75
LN
train 3.74 1.37

E Architecture Details for Language Modeling

Table 6 shows the Transformer architecture details for language modeling (Section 4.4). The
dimension of the feed-forward layer is 4× dmodel. We use vocabulary size 32K for small-scale and
256K for large-scale models.

F Details of Proxy Tasks

For vision tasks, we train a ViT with three layers, 96 hidden units and three heads, on 10% ImageNet
for 30k steps with batch size 64. The image size is 64× 64 and the patch size is 16. For language
tasks, we train a Transformer with two layers, 128 hidden units and two heads on LM1B [13] for 20K
steps with batch size 64, sequence length 32 and vocabulary size 3K. The evaluation time may vary
for different programs, but typically a evaluation can be done on one TPU V2 chip within 20min.
The validation accuracy or perplexity is used as the fitness.

Figure 8: Learning curve of ViT-S/16 (Left) and ViT-B/16 (Right) associated with Table 10. The
curves of the five adaptive optimizers are similar to each other.
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Figure 9: Left: Validation perplexity when we perform masked language modeling on the C4 dataset.
Right: Training loss of ViT-B/16 on ImageNet.

G Analysis of Loss Landscape

In this section, we try to understand why our Lion optimizer achieves better generalization than
AdamW from the lens of loss geometry. The convergence to a smooth landscape has been shown
to benefit the generalization of deep neural networks [14, 16, 30, 46]. Following Chen et al. [16],
we measure the landscape flatness at convergence by LN

train = Eϵ∼N [Ltrain(w + ϵ)] (average over
1K random noises) in Table 7. We observe that the ViT-B/16 trained by AdamW enjoys a smaller
training error Ltrain. However, Lion can enable ViT to converge to flatter regions, as it helps the
model retain comparably lower error against Gaussian perturbations.

H Available Functions

Program 8: Raw program of Lion be-
fore removing redundent statements.
def train(w, g, m, v, lr):
g = clip(g, lr)
m = clip(m, lr)
v845 = sqrt(0.6270633339881897)
v968 = sign(v)
v968 = v - v
g = arcsin(g)
m = interp(g, v, 0.8999999761581421)
v1 = m * m
v = interp(g, m, 1.109133005142212)
v845 = tanh(v845)
lr = lr * 0.0002171761734643951
update = m * lr
v1 = sqrt(v1)
update = update / v1
wd = lr * 0.4601978361606598
v1 = square(v1)
wd = wd * w
m = cosh(update)
lr = tan(1.4572199583053589)
update = update + wd
lr = cos(v845)
return update, m, v

We include 43 available functions that can be used in the
program during search. Note that the input of the functions
can be one n-dimensional array, dictionaries or lists of arrays,
similar to the pytrees in JAX.

Basic math functions from NumPy / JAX This includes
unary functions like abs, cos, sin, tan, arcsin, arccos,
arctan, exp, log, sinh, cosh, tanh, arcsinh, arccosh,
arctanh, sign, exp2, exp10, expm1, log10, log2, log1p,
square, sqrt, cube, cbrt, sign, reciprocal and binary
functions like +, -, *, /, power, maximum, minimum with the
same semantic as the corresponding function in NumPy / JAX.

Linear algebra functions commonly used in first-order
optimization algorithms This includes: (1) unary function
norm that computes the norm of each arrays in the input; (2)
unary function global_norm that computes the global norm
by treating all the numbers in the input as one vector; (3) binary
function dot that treats the two inputs as two vectors and
computes their dot product; (4) binary function cosine_sim
that treats the two inputs as two vectors and computes their
cosine similarity; (5) binary clip_by_global_norm (clip)
that clips the global norm of the first input to the value of the
second input that is required to be a scalar; (6) ternary function interpolate (interp) that uses the
third argument a, required to be a scalar, to compute a linear interpolation of the first two arguments
x and y with (1 - a) * x + a * y.

Functions producing commonly used constants This includes get_pi, get_e, get_eps that
generates π, e and ϵ = 10−8 respectively.
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Figure 10: Left: Ablation for the effect of batch size. Lion prefers a larger batch than AdamW.
ImageNet accuracy of ViT-B/16 trained from scratch when we vary lr and λ for AdamW (Middle)
and Lion (Right). Lion is more robust to different hyperparameter choices.

Figure 11: Left: The meta-validation (defined in Section 2.3) curves of two search runs measured
on a ∼500x larger meta-validation task compared to the proxy. The blue one meta-overfits at ∼15%
of the search progress, while the orange one meta-overfits at ∼90% and achieves a better metric.
Right: Histogram of the search progress when meta-overfitting happens based on 50 runs. Half of
the runs meta-overfit early but a long tail of runs meta-overfit much later. Blue cross depicts the best
meta-validation metric averaged within each bin, indicating that meta-overfitting happening later
leads to programs that generalize better.

I Abstract Execution

We propose to prune the large search space with abstract execution. Our approach is motivated by
the fact that a large number of programs are invalid, functionally equivalent, or contain redundant
statements that waste compute during evaluation. To address this, we introduce an abstract execution
step that checks the type and shape of each variable, and computes a hash for each unique computation
from inputs to outputs to detect redundant statements. The abstract execution can be seen as a static
analysis of the program, achieved by replacing functions and inputs with customized values. We
outline the specifics of the customized values and abstract execution procedure for three use cases
below. The cost of the abstract execution is usually negligible compared to the actual execution.

Detecting errors with type / shape inference To detect programs containing errors, we infer the
type and shape of each variable in the program through the following steps: (1) replace each input
with an abstract object that only contains type and shape information, and replace each statement
with a type and shape inference function; (2) iterate through all statements. Instead of executing the

Figure 12: Log perplexity of the small (Left), medium (Middle), and large (Right) size Transformer
on PG-19. Since β1 = 0.95, β2 = 0.98 in Lion when performing language modeling, we compare
to Ablation0.95 and Ablation0.98 with β = 0.95 and β = 0.98, respectively (see Section L for the
definition). Lion is still the best-performing one.
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Table 8: Accuracy on ImageNet, ImageNet ReaL, and ImageNet V2. Numbers in (·) are from Dai
et al. [21], Dosovitskiy et al. [26]. Results are averaged from three runs.

Model #Params Optimizer RandAug
+ Mixup ImageNet ReaL V2

Train from scratch on ImageNet

ResNet-50 25.56M
SGD

✗
76.22 82.39 63.93

AdamW 76.34 82.72 64.24
Lion 76.45 82.72 64.02

Mixer-S/16 18.53M AdamW
✗

69.26 75.71 55.01
Lion 69.92 76.19 55.75

Mixer-B/16 59.88M AdamW
✗

68.12 73.92 53.37
Lion 70.11 76.60 55.94

ViT-S/16 22.05M

AdamW
✗

76.12 81.94 63.09
Lion 76.70 82.64 64.14

AdamW
✓

78.89 84.61 66.73
Lion 79.46 85.25 67.68

ViT-B/16 86.57M

AdamW
✗

75.48 80.64 61.87
Lion 77.44 82.57 64.81

AdamW
✓

80.12 85.46 68.14
Lion 80.77 86.15 69.19

CoAtNet-1 42.23M AdamW
✓

83.36 (83.3) - -
Lion 84.07 - -

CoAtNet-3 166.97M AdamW
✓

84.45 (84.5) - -
Lion 84.87 - -

Pre-train on ImageNet-21K then fine-tune on ImageNet

ViT-B/16384 86.86M AdamW
✗

84.12 (83.97) 88.61 (88.35) 73.81
Lion 84.45 88.84 74.06

ViT-L/16384 304.72M AdamW
✗

85.07 (85.15) 88.78 (88.40) 75.10
Lion 85.59 89.35 75.84

original statement, we validate a function call by checking the function signature and type and shape
information of its arguments. If valid, we compute the type and shape information of the output and
assign it to the new variable; (3) verify the validity of the derived type and shape of the output. This
process essentially performs a static analysis of the program, exposing errors caused by type and
shape mismatch. Note that there are still run-time errors, such as division by zero, that cannot be
detected in this manner. Without such filtering of invalid programs, the search would be overwhelmed
with invalid programs, making it difficult to achieve meaningful progress.

Deduplicating with functional hash Among the valid programs that execute without errors, there
are still lots of duplicates due to functionally equivalent programs that have different surface forms
but the same underlying functionality. To address this issue, we calculate a functional hash value
for every unique computation from the inputs to the outputs as follows: (1) a unique hash value is
assigned to each input and function; (2) iterate through all statements, calculating the hash value of
the outputs by combining the hash values of the functions and arguments; (3) compute the hash value
of program by combining the hash values of all outputs. We then build a hash table that maps each
unique functional hash value to the fitness of the corresponding program. When a new program is
generated, we first look up its hash value and only perform evaluation if it is not found or if we want
to evaluate it multiple times to reduce measurement noise. In our experiments, this technique reduces
the search cost by ∼10x, as depicted in Figure 2 (Right).

Identifying redundant statements by tracking dependencies In program evolution, redundant
statements are included to enable combining multiple mutations to make larger program changes.
However, these redundant statements increase the evaluation cost and make program analysis more
challenging. To identify redundant statements, we need to determine the set of statements that the
outputs depend on, which can be computed in a recursive manner using the following steps: (1)
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Table 9: Fine-tuning performance of the T5 Base, Large, and 11B on the GLUE dev set. Results
reported are the peak validation scores per task.

Model Optimizer CoLA SST-2 MRPC STS-B QQP MNLI
-m

MNLI
-mm QNLI RTE Avg

Base AdamW 60.87 95.18 92.39 / 89.22 90.70 / 90.51 89.23 / 92.00 86.77 86.91 93.70 81.59 87.42
Lion 61.07 95.18 92.52 / 89.46 90.61 / 90.40 89.52 / 92.20 87.27 87.25 93.85 85.56 87.91

Large AdamW 63.89 96.10 93.50 / 90.93 91.69 / 91.56 90.08 / 92.57 89.69 89.92 94.45 89.17 89.46
Lion 65.12 96.22 94.06 / 91.67 91.79 / 91.60 90.23 / 92.67 89.85 89.94 94.89 90.25 89.86

11B AdamW 69.50 97.02 93.75 / 91.18 92.57 / 92.61 90.45 / 92.85 92.17 91.99 96.41 92.42 91.08
Lion 71.31 97.13 94.58 / 92.65 93.04 / 93.04 90.57 / 92.95 91.88 91.65 96.56 93.86 91.60

replace the value of each input with an empty set, as they do not depend on any statement; (2) iterate
through each statement. Note that each statement is an assignment that calls a function and assigns the
result to a variable, which in turn depends on the current statement and all the depending statements
of the function arguments. Therefore we replace the value of the variable with its dependency, i.e., a
set of all depending statements; (3) compute the union of all statements that each output depends
on, which contains all non-redundant statements. By filtering out redundant statements, we obtain a
simplified version of the program that is cheaper to execute and easier to analyze. In our experiments,
this reduces the program length by ∼3x on average, as shown in Figure 2 (Right).

J Masked Language Modeling and Fine-tuning

Masked language modeling We also perform BERT training on the C4 dataset [77]. It requires
the language models to reconstruct randomly masked out tokens in the input sequence. We use the
same architectures and training setups as the smaller-scale autoregressive experiments. Lion performs
slightly better than AdamW regarding the validation perplexity: 4.18 vs. 4.25 (small), 3.42 vs. 3.54
(medium), and 3.18 vs. 3.25 (large). See Figure 9 (Left) in the Appendix for the learning curves.

Fine-tuning We fine-tune Base (220M), Large (770M), and the largest 11B T5 [77] on the GLUE
benchmark [91]. Every model is fine-tuned for 500K steps with a batch size of 128 and a constant
learning rate. Table 9 shows the results on the GLUE dev set. For MRPC and QQP, we report the
F1 / Accuracy scores, for STS-B, we report the Pearson / Spearman correlation, and for the other
datasets, we report their default metric. On average, Lion beats AdamW across all three model scales.
It achieves 10, 12, and 10 wins out of 12 scores for T5 Base, Large, and 11B models, respectively.

K Comparison with Other Popular Optimizers

We also employ four popular handcrafted optimizers: RAdam [58], NAdam [27], AdaBelief [105],
AMSGrad [82] and two optimizers discovered by AutoML: PowerSign [5] and AddSign [5] to train
ViT-S/16 and ViT-B/16 on ImageNet (with RandAug and Mixup). We thoroughly tune the peak
learning rate lr and decoupled weight decay λ [60] of every optimizer, while other hyperparameters
are set as the default values in Optax.2 As shown in Table 10, Lion is still the best performing one. We
notice that there is no clear winner amongst the baselines. AMSGrad performs the best on ViT-S/16
but the worst on ViT-B/16. The inferior performance of PowerSign and AddSign compared to other
optimizers is consistent with previous observations that automatically discovered optimizers have
difficulty generalizing to real-world learning tasks. Figure 8 further shows that the learning curves of
the five adaptive optimizers are pretty similar, whereas Lion has a unique one that learns faster.

L Ablations

Momentum tracking To ablate the effects of both β1 and β2, we compare to a simple update
rule: m = interp(g, m, β); update = sign(m). Two optimizers, Ablation0.9 and Ablation0.99,
are created with β values of 0.9 and 0.99 respectively. Illustrated by Table 10, the two ablated
optimization algorithms perform worse than all five compared baselines, let alone our Lion. Further

2https://github.com/deepmind/optax
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Table 10: The performance of various optimizers to train ViT-S/16 and ViT-B/16 on ImageNet (with
RandAug and Mixup). Lion is still the best performing one.

Model Task AdamW RAdam NAdam Ada-
Belief AMSGrad Power-

Sign
Add-
Sign Ablation0.9 Ablation0.99 Lion

ViT-S/16
ImageNet 78.89 78.59 78.91 78.71 79.01 77.36 77.37 78.23 78.19 79.46

ReaL 84.61 84.47 84.62 84.56 85.01 83.39 83.36 84.28 84.17 85.25
V2 66.73 66.39 66.02 66.35 66.82 65.17 64.52 66.13 65.96 67.68

ViT-B/16
ImageNet 80.12 80.26 80.32 80.29 79.85 78.95 78.50 79.54 79.90 80.77

ReaL 85.46 85.45 85.44 85.48 85.16 84.76 84.49 85.10 85.36 86.15
V2 68.14 67.76 68.46 68.19 68.48 67.46 65.95 68.07 68.20 69.19

ablation studies on the language modeling task (as depicted in Figure 12 in the Appendix) yield similar
conclusions. Those results validate the effectiveness and necessity of using two linear interpolation
functions, letting Lion to remember longer gradient history meanwhile assign a higher weight to the
current gradient.

Effect of batch size Some may question whether Lion requires a large batch size to accurately
determine the direction due to the added noise from the sign operation. To address this concern, we
train a ViT-B/16 model on ImageNet using various batch sizes while maintaining the total training
epoch as 300, and incorporating RandAug and Mixup techniques. As shown in Figure 10 (Left), the
optimal batch size for AdamW is 256, while for Lion is 4,096. This indicates that Lion indeed prefers
a larger batch size, but its performance remains robust even with a small 64 batch size. Furthermore,
when the batch size enlarges to 32K, leading to only 11K training steps, Lion achieves a significant
2.5% accuracy gain over AdamW (77.9% vs. 75.4%), demonstrating its effectiveness in the large
batch training setting.

M Hyperparameter Tuning

To ensure a fair comparison, we tune the peak learning rate lr and decoupled weight decay λ for both
AdamW (Adafactor) and our Lion using a logarithmic scale. The default values for β1 and β2 in
AdamW are set as 0.9 and 0.999, respectively, with an ϵ of 1e− 8, while in Lion, the default values
for β1 and β2 are discovered through the program search process and set as 0.9 and 0.99, respectively.
We only tune those hyperparameters in Section 4.4, where β1 = 0.9, β2 = 0.99 in AdamW, and
β1 = 0.95, β2 = 0.98 in Lion. In our experience, reducing β2 results in shorter memorization of
historical information and enhanced training stability. Additionally, the ϵ in AdamW is set as 1e− 6
instead of the default 1e− 8 as it improves stability in our experiments, similar to the observations in
RoBERTa [59].

The update generated by Lion is an element-wise binary ±1, as a result of the sign operation,
therefore it has a larger norm than those generated by other optimizers. Based on our experience, a
suitable learning rate for Lion is typically 3-10x smaller than that for AdamW. Note that the initial
value, peak value, and end value of the learning rate should be changed simultaneously with the
same ratio compared to AdamW. We do not modify other training settings such as the learning rate
schedule, gradient and update clipping. Since the effective weight decay is lr * λ: update += w
* λ; update *= lr, the value of λ used for Lion is 3-10x larger than that for AdamW in order to
maintain a similar strength. For instance,

• lr = 1e−4, λ = 10.0 in Lion and lr = 1e−3, λ = 1.0 in AdamW when training ViT-B/16
on ImageNet with strong augmentations,

• lr = 3e− 5, λ = 0.1 in Lion and lr = 3e− 4, λ = 0.01 in AdamW for diffusion models,
• lr = 1e − 4, λ = 0.01 in Lion and lr = 1e − 3, λ = 0.001 in Adafactor for the 7.5B

language modeling.

Please see Table 12 (in the Appendix) for all hyperparameters.

Apart from the peak performance, the sensitivity to hyperparameters and the difficulty in tuning them
are also critical for the adoption of an optimizer in practice. In Figure 10 (Middle and Right), we
alter both lr and λ when training ViT-B/16 from scratch on ImageNet. Suggested by the heatmaps,
Lion is more robust to different hyperparameter choices compared to AdamW.
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N Limitations

Limitations of search Despite the efforts to make the search space less restrictive, it remains inspired
by the popular first-order optimization algorithms, leading to a bias towards similar algorithms. It
also lacks the functions required to construct advanced second-order algorithms [2, 35, 62]. The
search cost is still quite large and the algorithm simplification requires manual intervention. Further
reducing the bias in the search space to discover more novel algorithms and improving the search
efficiency are important future directions. The current program structure is quite simplistic, as we do
not find a good usage of more advanced program constructs such as conditional, loop statements, and
defining new functions. Exploring how to incorporate these elements has the potential to unlock new
possibilities.

Limitations of Lion While we endeavour to evaluate Lion on as many tasks as possible, the
assessment is limited to the chosen tasks. On vision tasks, the discrepancies between Lion, AdamW,
and momentum SGD are pretty small on ResNets, likely due to the fact that ConvNets are easier
to optimize compared to Transformers. The performance gain brought by Lion decreases when
strong augmentations are utilized. There are also several tasks where Lion performs similarly to
AdamW, including: (1) the Imagen text-to-image base model, (2) the perplexity of autoregressive
language model trained on the large-scale internal dataset, which is arguably a more reliable metric
the in-context learning benchmarks, and (3) masked language modeling on C4. These tasks have a
common characteristic in that the datasets are massive and of high quality, which results in a reduced
difference between optimizers. Another potential limitation is the batch size. Though people often
scale up the batch size to enable more parallelism, it is likely that Lion performs no better than
AdamW if the batch size is small (<64). Additional, Lion still requires momentum tracking in
bfloat16, which can be expensive for training giant models. One potential solution is to factorize
the momentum to save memory.

27



Table 11: One-shot evaluation on English NLP tasks. TriviaQA, NQs, and WebQs are NLG tasks and
the rest are NLU tasks. This corresponds to Table 3 in the main text.

Task 1.1B 2.1B 7.5B 6.7B
GPT-3

8B
PaLMAdafactor Lion Adafactor Lion Adafactor Lion

#Tokens 300B 300B 780B

TriviaQA (EM) 21.5 25.1 32.0 33.4 47.9 48.8 44.4 48.5
NQs (EM) 4.3 4.8 6.3 7.3 12.3 12.1 9.8 10.6
WebQs (EM) 7.5 6.3 8.4 8.7 12.1 13.3 15.1 12.6

HellaSwag 50.7 50.3 59.4 59.3 68.2 68.3 66.5 68.2
StoryCloze 74.8 74.4 78.2 78.3 81.2 81.5 78.7 78.7

Winograd 75.1 80.2 81.3 82.1 85.3 84.2 84.6 85.3
Winogrande 59.7 60.5 64.8 65.7 71.4 71.0 65.8 68.3

RACE-m 52.0 50.8 55.1 53.8 59.1 61.3 54.7 57.7
RACE-h 36.8 35.4 40.3 40.7 44.5 43.9 44.3 41.6

PIQA 69.4 69.9 71.3 72.1 75.5 74.5 76.3 76.1
ARC-e 64.3 62.0 69.5 68.9 72.4 72.7 62.6 71.3
ARC-c 31.2 32.9 37.3 38.0 43.3 42.6 41.5 42.3
OpenbookQA 44.8 48.0 48.4 49.0 51.4 52.4 53.0 47.4

BoolQ 54.3 56.7 64.1 62.9 73.5 73.9 68.7 64.7
Copa 75.0 78.0 83.0 84.0 85.0 87.0 82.0 82.0
RTE 55.6 52.4 49.8 59.2 63.9 62.5 54.9 57.8
WiC 47.6 47.3 46.1 48.1 50.9 48.1 50.3 47.3
Multirc (F1a) 35.9 44.3 45.0 48.8 44.7 59.2 64.5 50.6
WSC 76.5 75.4 79.6 79.3 86.7 85.6 60.6 81.4
ReCoRD 73.4 73.7 77.8 77.7 81.0 81.1 88.0 87.8
CB 46.4 44.6 48.2 44.6 51.8 46.4 33.9 41.1

ANLI R1 33.3 30.1 32.4 31.2 31.5 34.0 31.6 32.4
ANLI R2 29.8 31.8 29.8 30.6 32.4 31.9 33.9 31.4
ANLI R3 29.8 31.8 31.4 31.9 33.6 34.2 33.1 34.5

Avg NLG 11.1 12.1 15.6 16.5 24.1 24.7 23.1 23.9
Avg NLU 53.2 53.9 56.8 57.4 61.3 61.7 58.5 59.4
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Table 12: Hyperparameters for all the experiments.

Model Dropout Stoch
Depth Augmentations Optimizer β1 β2 lr λ

Train from scratch on ImageNet

ResNet-50 - - - AdamW 0.9 0.999 3e− 3 0.1
Lion 0.9 0.99 3e− 4 1.0

Mixer-S/16 - 0.1 - AdamW 0.9 0.999 1e− 2 0.3
Lion 0.9 0.99 3e− 3 1.0

Mixer-B/16 - 0.1 - AdamW 0.9 0.999 1e− 2 0.3
Lion 0.9 0.99 3e− 3 3.0

ViT-S/16
0.1 0.1 - AdamW 0.9 0.999 1e− 2 0.1

Lion 0.9 0.99 1e− 3 1.0

- - RandAug: 2, 15
Mixup: 0.5

AdamW 0.9 0.999 3e− 3 0.1
Lion 0.9 0.99 3e− 4 1.0

ViT-B/16
0.1 0.1 - AdamW 0.9 0.999 3e− 3 0.3

Lion 0.9 0.99 1e− 3 1.0

- - RandAug: 2, 15
Mixup: 0.5

AdamW 0.9 0.999 1e− 3 1.0
Lion 0.9 0.99 1e− 4 10.0

CoAtNet-1 - 0.3 RandAug: 2, 15
Mixup: 0.8

AdamW 0.9 0.999 1e− 3 0.05
Lion 0.9 0.99 2e− 4 1.0

CoAtNet-3 - 0.7 RandAug: 2, 15
Mixup: 0.8

AdamW 0.9 0.999 1e− 3 0.05
Lion 0.9 0.99 2e− 4 1.0

Pre-train on ImageNet-21K

ViT-B/16 0.1 0.1 - AdamW 0.9 0.999 1e− 3 0.1
Lion 0.9 0.99 1e− 4 0.3

ViT-L/16 0.1 0.1 - AdamW 0.9 0.999 1e− 3 0.3
Lion 0.9 0.99 1e− 4 1.0

Pre-train on JFT

ViT-B/16 - - - AdamW 0.9 0.999 6e− 4 0.1
Lion 0.9 0.99 1e− 4 0.3

ViT-L/16 - - - AdamW 0.9 0.999 3e− 4 0.1
Lion 0.9 0.99 1e− 4 0.3

ViT-H/14 - - - AdamW 0.9 0.999 3e− 4 0.1
Lion 0.9 0.99 3e− 5 0.3

ViT-g/14 & ViT-G/14 - - - Adafactor 0.9 0.999 8e− 4 0.03
Lion 0.9 0.99 3e− 5 0.3

Vision-language contrastive learning

LiT-B/∗-B - - - AdamW 0.9 0.999 1e− 3 -Lion 0.9 0.99 3e− 4

LiT-g/14-L - - - AdamW 0.9 0.999 1e− 3 0.1
Lion 0.9 0.99 2e− 4 0.5

BASIC-L - - - Adafactor 0.9 0.999 5e− 4 0.01
Lion 0.9 0.99 2e− 4 0.1

Diffusion model

Imagen base & super-resolution - - - AdamW 0.9 0.999 1e− 3 -Lion 0.9 0.99 1e− 4

Image generation on ImageNet 64× 64: 0.1
128× 128 & 256× 256: 0.2 - - AdamW 0.9 0.999 3e− 4 0.01

Lion 0.9 0.99 3e− 5 0.1

Autoregressive & masked language modeling

Small & Medium (PG-19, C4) & Large - - - AdamW 0.9 0.99 3e− 3 -Lion 0.95 0.98 3e− 4

Medium (Wiki-40B) - - - AdamW 0.9 0.99 3e− 3 0.001
Lion 0.95 0.98 3e− 4 0.01

1.1B & 2.1B - - - Adafactor 0.9 0.99 2e− 3 0.0005
Lion 0.95 0.98 2e− 4 0.005

7.5B - - - Adafactor 0.9 0.99 1e− 3 0.001
Lion 0.95 0.98 1e− 4 0.01

Language model fine-tuning

T5-Base & Large & 11B 0.1 - - AdamW 0.9 0.99 3e− 5 -Lion 0.95 0.98 3e− 6
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