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Abstract—Google has a large team of machine learning (ML)
developers working on a large number of ML models. ML model
development suffers from long edit/validate cycles compared to
traditional software development. This makes it tedious and time
consuming for modeling teams to propagate ML innovations to
their models. We present HEINZELMAENNCHEN, an ML model-
ing automation system, which allows users to apply semantically
specified modeling changes to models and evaluate them at scale.

Three insights are key to creating this system: Automatic code
modification allows us to mechanically apply modeling changes
to a wide variety of models. Workflow automation systems are
well suited to operate complex ML training machinery as if
they were humans, saving significant manual effort. And finally,
given a large enough model population, even imperfect automatic
modeling with a lower-than-human success rate will generate
significant aggregate gains.

In this paper, we describe the design and an implementation of
our system. We also evaluate the system performance and include
an empirical study to demonstrate the utility and critical impact
of the system. Our system is widely used by hundreds of ML
developers and it significantly accelerates model development on
hundreds of production models.

Index Terms—SE for AI, ML Model Development

I. INTRODUCTION

Machine learning (ML) has become an essential part of
many companies’ business, occupying significant numbers of
engineers improving ML models. Traditional software engi-
neering allows engineers to validate their changes quickly,
by syntax checking, compilation, and unit testing. On the
other hand, ML engineering [1] suffers from long edit/validate
cycles since the effects from modeling changes can often only
be understood once a model has been retrained and evaluated,
a process that can take days or even weeks, depending on
the size and complexity of the model. After offline evaluation
shows promise, live A/B experiments are needed to determine
with certainty whether a change has a positive impact on
the business. To find a promising change that can actually
be launched, developers often need to create and evaluate
hundreds of candidate changes.

This makes automation an obvious productivity booster. The
traditional approach in such situations is to create integrated
end-to-end ML platforms [2], [3], [4], [5]. These aim to
streamline the development process by standardizing model
development and reducing the amount of time spent on making
model changes and shepherding those changes through various
pieces of infrastructure. However, developers still need to write

2832-7659/25/$31.00 ©2025 IEEE
DOI 10.1109/ICSE-SEIP66354.2025.00020

159

and manually edit their models as code in a model-building
framework such as TensorFlow [6] or PyTorch [7].

Another avenue for reducing the need for manual experi-
mentation is to apply black-box [8] or machine learning based
optimization [9] techniques to assist engineers in the process
of identifying the most promising changes. Models are code,
and truly automating code modification is difficult in general.
Therefore, even with those techniques, it is necessary to make
manual changes to each model separately.

Approaches to fully automatically construct models from
data exist [10], [11], but such approaches can only create
models from scratch. At Google, we must operate on models
that have been carefully tuned, often for years. Automatically
created models cannot compete in this environment.

In this paper, we propose HEINZELMAENNCHEN, a system
that improves existing models, creating changes that are then
evaluated for quality and efficiency. To the best of our knowl-
edge, our system is the first to automate the experimentation
user journey to this extent.

Automatically and reliably editing code is difficult outside
narrowly defined domains. Fortunately, ML models are often
written in a declarative form: A program creates a background
representation (e.g., a Keras Model class or a TensorFlow
GraphDef) which is executed later, possibly on a different
machine/process. This allows us to work not only on the
code representation of the model, but on the background
representation, which is a significantly easier problem.

Still, model changes present a task too difficult for fully
automated, direct optimization. Instead, we allow users to
encode changes that they have developed for a model in an
abstract form, a recipe. Concretely, a recipe is a program that
makes model code edits to modify the semantic of a model.
Such recipes are applicable to a wide variety of models, and
once encoded, can be applied automatically at scale without
human involvement.

To achieve full automation, we encode the end-to-end mod-
eling and evaluation workflow into profocols, which actuate
different systems as a human user would. In combination,
recipes and protocols allow us to automate the full end-to-end
experimentation user journey. Our users can select the type of
recipe and protocol to execute, and are presented (after the
required training time) with evaluation results.

This paper makes the following contributions:



« We propose mechanisms that allow ML engineers to encode
a modeling change as a recipe, an abstracted and general-
izable representation of a modeling change.

o We describe a scalable and reliable end-to-end automation
system of offline experimentation. This means that modeling
changes are not only automatically created, our system starts
and monitors the training process, and performs configurable
evaluations after training is complete.

« We demonstrate the effect of our system in Ads at Google,
with hundreds of developers working on hundreds of mod-
els, creating O(10k) new experimental model variants per
year. We observe increases in productivity, faster spread of
novel and complex techniques through the model popula-
tion, as well as increased adoption of simpler techniques.
The system also accelerates revenue critical model launches.

II. BACKGROUND

Our system operates in a complex environment of existing
tools, optimized for scale and efficiency. Below we describe
the main features of these adjacent technologies, as they
influence the design choices in HEINZELMAENNCHEN.

A. Training Service

The Ads training service at Google is a machine learning
system for continuous training of large-scale deep neural net-
works (DNNs) on non-stationary data. Training examples are
visited in chronological order and the model is continuously
trained as new data arrives.

The training service supports a very large population of
active models (around O(1000) concurrently); model man-
agement operations are accessible through a command line
interface and a Web UI. While these interfaces were designed
for use by humans, they are standardized enough for opera-
tion by an automation service. The training service manages
model training for the most revenue-critical models at Google,
and therefore provides strong guarantees on repeatability and
execution reliability. Nevertheless, given the scale and number
of models in training, it regularly surfaces error to users for
various reasons, and our automation system has to handle a
variety of errors to achieve a high training success rate.

Each model in the training service has a model construction
plan and a training job configuration. The model construction
plan describes the training data and the model hyperparam-
eters such as learning rate and batch size, as well as the
model architecture and how to process input features. It is
implemented in Python and conceptually very similar to a
Keras [12] Model. The plan encodes the model semantics
using abstractions such as layers and their connections. The
information is used to construct a TensorFlow graph, which
is then executed on dedicated workers during training. The
training job configuration controls the behavior of the training
jobs, which includes the model priority, the number of Tensor
Processing Units (TPUs) to use, etc.

B. Orchestration Service

We use an orchestration service that can execute arbitrary
steps and is configured using an acyclic dependency graph.
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A step is a binary that could implement arbitrary logic.
The system is functionally equivalent to publicly available
orchestration systems such as Apache AirFlow [13].

This orchestration service provides a hosted solution with
strong execution guarantees and primitives for error handling.
This is essential to handle user-facing errors generated by the
training service (and other components).

C. Neural Architecture Search

To find a model architecture with optimal accuracy/cost
trade-off, developers typically have to tune a large num-
ber of model parameters (such as embedding widths, layer
sizes, etc.). Even with a small number of options for each
hyperparameter, the search space grows combinatorially and
quickly becomes intractable, even for iterative architecture
search methods [14]. To make the search cost-effective, we
use TuNAS, a neural architecture search algorithm based on
weight sharing [15]. This allows us to efficiently explore high-
dimensional network configuration spaces.

To use TuNAS, model developers need to convert a model
into a search model with candidate search space, e.g. a set of
candidate widths for each hidden layer, and train the model to
collect search result. After the search is done, developers need
to bake in the search result, which contains the concrete width
for each embedding or hidden layer, to the original model and
retrain a static model.

D. Vizier

Vizier [8] is a state-of-the-art black-box optimization service
used for hyperparameter tuning. It provides a uniform interface
(RPC service) for users to conduct hyperparameter tuning
studies. Although Vizier studies are more expensive than
TuNAS, non-architectural hyperparameters (specifically, those
globally affecting the learning process, such as learning rates,
input data, batch size, etc.) can only be tuned with Vizier.

To use Vizier, developers need to build an application
specific hyperparameter tuning system on top of the Vizier
service. The tuning system creates a Vizier study with a search
space, a search algorithm and a set of parameters. Then, Vizier
provides trials setting concrete hyperparameter values, and the
tuning system bakes in those hyperparameter values into the
model, evaluates the model performance, and reports the result
to the Vizier service. Based on these results, Vizier proposes
new trials until the optimization is complete.

III. IMPLEMENTATION

The HEINZELMAENNCHEN system performs end-to-end
training and evaluation for users. To begin such an experiment,
a user specifies the farget model to base the experiment on,
the protocol to apply, and the modeling intent.

HEINZELMAENNCHEN maintains a database of available
protocols. Each protocol encodes a specific modeling task, for
instance, tuning the learning rate of a model. Protocols are
discussed in detail in Sec. III-D.

The training service maintains a list of all available models,
which are indexed simply by name. HEINZELMAENNCHEN



maintains a database of metadata associated with these models,
containing information needed for optimization. This includes
some high-level information about the model architecture
that is useful for automation, but most importantly, it tells
the system which metrics are the best predictors for launch
readiness, and which thresholds to apply. For example, the
HEINZELMAENNCHEN system knows, for each model, which
is the primary metric to optimize for, and what amount gain
in this metric is required to create a viable launch candidate
(candidate models with marginal gain may not be launched, the
return on the amount of work is too small). It also contains
launch constraints regarding the model size (RAM require-
ments) or speed (indicative of training cost). These constraints
are used to guide the TUNAS or Vizier optimizations, and to
report whether a given experiment was successful, i.e., whether
a viable launch candidate was found.

Several separate sets of constraints can be defined, each
associated with a modeling infent. The two most common
modeling intents are improve quality and optimize resources.

Gathering and encoding this information happens during
model onboarding. We provide a Python library which allows
model developers to include metadata directly in the model.
Alternatively, annotations can be added to a database, either
for a single model, or for a class of models.

To start an experiment, a user selects a target model, a proto-
col, and a modeling intent. We provide a CLI as well as a Web
UI which guides users through the process. To support bulk
processing, we offer mechanisms to apply a set of protocols
to a set of target models. For details on the available API,
see Sec. III-A. The system uses the user-provided protocol,
target model, and intent to create an experiment configuration,
which controls the experiment behavior. It is possible to edit
this configuration to override defaults or details inferred from
the stored metadata.

Upon confirmation, the service creates one or several exper-
iments, which are added to a queue awaiting execution. Once
resources are available, and constraints such as rate limiting
allow an experiment to proceed, the experiment is scheduled,
and its protocol starts to execute.

At the heart of each protocol is a recipe (or several), a
program which modifies a copy of the target model to create
a proposed model. See Sec. III-E for details on recipes. While
some protocols can be rather complex, the simplest and most
common protocols apply their recipe to create a proposed
model, and then train and evaluate the proposed model against
the constraints provided in model onboarding. Details on
protocols are found in Sec. III-D.

When an experiment finishes, the system sends the owning
user an email notification with the experiment result and a link
to a status page. If the proposed model is promising, users
can start live A/B testing, and eventually launch the modeling
change if it meets the launch criteria.

A. API

The system provides two groups of RPC endpoints. For
convenience, these RPCs are exposed via a CLI and a Web
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interface, but we also make these RPCs public to allow
advanced users to control the system programmatically.

The first group of RPCs allows users to manage registra-
tions, which cause the system to generate experiments. The
second group deals directly with the generated experiments.

The main entry point for users is the RegisterModels RPC.
It allows users to provide one or more models, and a list of
protocols along with experiment configurations. Experiment
configurations can be automatically generated from modeling
intents. The system stores these lists and will schedule ex-
periments for the cross product between all given protocols
and models. It returns a registration ID which can be used to
cancel the registration (CancelRegistration) Or query its state
(cetRegistration). Cancelling a registration also cancels all
experiments that have been scheduled.

Users can also manage experiments directly, using
SearchExperiments to find experiments using a search query,
GetExperiment to view details on an individual experiment,
and cancelExperiment to cancel a single experiment.

This small set of primitives is sufficient to provide the
functionality needed. In particular, explicitly allowing for bulk
processing is important to enable working efficiently with large
numbers of models.

B. Model Onboarding

When working with a large population of models maintained
by hundreds of ML engineers, any individual modeler will
not know the details of every model. In order to allow for
automated changes and evaluation of experimental results, we
have to store metadata about models.

Users can add such metadata directly to the model code.
This has the advantage that such annotations are carried over
automatically when a model is branched and modified.

Model metadata added in this manner needs to be robust
to typical modeling changes. This ensures that the model
onboarding process is only a one-time cost to users. In cases
where annotations have to be changed due to changes to the
model itself, we found that embedding the annotations in the
model code successfully nudges developers to update them
along with their other changes.

Metadata that is typically added to model code includes
high-level structural information, for example, the name of
the first dense layer, the most important model tower, or the
main loss objective. This type of annotation makes structure-
modifying protocols easier to implement and more robust, as
they otherwise have to infer this information by analysing the
model’s computation graph.

Another type of annotation allows for configuration of the
evaluation data to use. For example, some models should only
be evaluated on data from a specific date range. Without this
information, the automatically produced evaluations might be
unreliable and misleading.

Most importantly, models define evaluation metrics for
debugging and performance analysis. In order to automatically
determine whether a candidate model is promising, the system
needs to know which metrics are important, and how much



they need to improve to make a change worthwhile. We there-
fore allow defining a set of constraints, each of which specifies
a metric, an expectation indicating whether the metric should
be smaller or larger, and an absolute or relative threshold.

Some protocols, especially TuUNAS or Vizier-based proto-
cols, can optimize a wide variety of metrics. In such cases,
users have to communicate their modeling intent, or, which
metric they want to consider the primary optimization objec-
tive. Such a modeling intent is expressed as a named set of
constraints. We have found that these modeling intents are
reusable across many models, and we therefore store them in
a central database instead of embedding them with the models.

The most common intents are improve quality, which is
encoded as a threshold requiring a certain improvement of a
quality metric while keeping performance metrics neutral, and
optimize resources which requires an improvement in one or
more performance metrics (e.g., RAM utilization, training step
time), while keeping quality metrics neutral. Users can pick
one of the pre-defined intents by its name when they start an
experiment. If an explicit intent is absent, the system infers
the most likely one from the type of protocol used.

C. System Architecture

Our system is built as a collection of microservices (see
Figure 1): Our system’s user-facing components are a com-
mand line interface (CLI) and a Web UI, both of which
communicate, via a public API, to an API server. The UI is
served from a separate frontend server. A scheduling server
schedules experiments. Once an experiment starts, it may
create one or more workflows, whose execution is orchestrated
by a dedicated orchestration server. The services are backed by
a Spanner database [16], which persists all necessary system
state to provide robustness against machine failures, and which
provides queuing primitives with strong execution guarantees,
significantly simplifying the service logic. Auxiliary services
perform garbage collection (workflow cleaner), send emails
and notifications (email service) and snapshot the experiment
database for analysis (experiment exporter).

1) Web Ul & CLI: Users interact with the service either
via a CLI or a Web UI provided by the frontend server. The
Ul is designed to be experiment centric, because we find that
it is more intuitive for users to think in terms of experiments.
The UI provides a launch page, a search page, an experiment
page and an analysis page. Figure 2a shows the launch page,
which allows users to start an experiment given a target model,
a protocol, and an intent. If the model is correctly onboarded
and sufficient metadata is available to the system, the system
can fully populate the experiment configuration. Users can
override or if necessary, complete the configuration. Some
protocols are parameterized, and users can edit such protocol
parameters. Many protocols support parameters that can be
chosen by automatic optimization (i.e., using Vizier), or which
can be manually specified (e.g. controlling the downsampling
rate for input data reduction).

The search page shows all experiments matching a query.
Most common queries include searching experiments by ex-
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periment owner, target model sub-string or protocol name.
Clicking any experiment on the search page navigates to the
an experiment page, which shows the model registration and
experiment details. It allows users to check experiment state,
and for finished experiments, analyze the result. Figure 2b
shows the analysis page, which allows comparing evaluation
metrics of multiple experiments that share the same target
model and protocol, but with different protocol parameters.

The Web Ul enables a much smoother user journey and
is important for broad adoption of the system. In total,
94% users are using the Web Ul They have created 76%
of all experiments. The CLI is used for scripting and bulk
experiment creation.

2) API Server: While most users use the CLI or Web UI
to interact with the system, we make the API server publicly
accessible, and it can be used directly by advanced users. It
exposes the public API discussed above, allowing users to
manage registrations and experiments. We use Spanner queues
to perform work on demand, and to guarantee that execution
happens exactly once. The listener API endpoints are triggered
by such queue events. This design pattern allows us to offload
consistency concerns to Spanner. Even in the presence of
multiple API server instances, we do not need to implement
custom logic to ensure events are processed exactly once.

For example, to monitor running experiments, the
LeaseExperimentListener is periodically triggered by Span-
ner messages. The handler communicates with the orchestra-
tion server to check if the workflow executes normally. If
so, another message is put into the queue which will trigger
the same handler again in the future. If the workflow has
failed, the LeaseExperimentListener marks the experiment as
FINISHED, potentially triggering cleanup work. Other listener
endpoints work similarly.

The LeaseExperimentListener also handles the majority
of error classification and reporting. In case a workflow fails,
we attempt to communicate a precise reason to the user. For
bookkeeping, we distinguish among failures due to invalid user
inputs, in which case the LeaseExperimentListener sets the
experiment status to USErR_ERROR. If the failure is due to a
system error which requires our investigation, the status is set
to sysTeEM_ERROR. Essentially, workflow execution failures that
are not user errors are classified as system errors. To improve
system reliability, we want to minimize the percentage of
experiments that end with system errors. If the workflow
is stuck, the ExpireExperimentListener sets the experiment
status to DEADLINE_EXCEEDED. If users cancel an experiment,
its status is set t0 CANCELED.

3) Scheduling Server: When an experiment is created in
response to a registration, it starts in the ENQUEUED state.
The scheduling server decides which enqueued experiments to
launch (transitioning them to IN_PROGRESS). Once an exper-
iment launches, a corresponding workflow is created, which
is then managed by the orchestration server. Conceptually
separating workflows and experiments allows us to create
experiments quickly in the API server, while starting an
experiment by creating its workflow could take minutes.
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The scheduling server provides a quota mechanism for
resource management: experiments are associated with a quota
group based on the target model’s owning team.

The ExperimentScheduler monitors the number of
IN_PROGRESS experiments for each quota group. It randomly
picks a quota group that is not overloaded with IN_PROGRESS
experiments, finds ENQUEUED experiments in that quota group,
and marks those experiments as IN_PROGRESS. This makes sure
that the number of IN_PROGRESS experiments for each quota
group is always below the allotted quota.

When an experiment is scheduled, the system asks Spanner
to trigger LeaseExperimentListener after 5 minutes and
ExpireExperimentListener after 30 days, respectively. Then,
the ExperimentLeaser invokes the createworkflow RPC to
launch a workflow and persists the returned workflow ID to the
database. To avoid 1N_PROGRESS experiment hanging forever
when its workflow creation is interrupted, e.g. when the server
is shutdown for maintenance, we give ExperimentLeaser 5
minutes to store the workflow ID. If the first invocation
of LeaseExperimentListener cannot find a workflow ID, it
resets the experiment to ENQUEUED for rescheduling.

163

The scheduling server provides the experiment
ManagementService exposing the internal FinishExperiment
RPC endpoint. At the end of the workflow execution, it invokes
the FinishExperiment RPC to store experiment results and
sets the experiment state to FINISHED in the database. If the
proposed model satisfies all evaluation constraints, the system
sets the experiment status to saTISFIED. If any constraint is
not satisfied, the status is set t0 UNSATISFIED.

4) Orchestration Server: The orchestration server is re-
sponsible for managing the execution of the protocol. It takes
as input a workflow config, which contains a graph of steps.
Each step is a binary that can take inputs and store outputs on a
remote file system. A step output can be used as another step’s
input, which introduces a step dependency. All steps form an
acyclic graph and the orchestration server remotely executes
these steps in topological order, making sure that a step is
only executed when all its inputs are ready. The orchestration
maximizes step execution parallelism to minimize workflow
end-to-end latency. The orchestration service provides an API
allowing the API server’s LeaseExperimentListener handler
to find failed steps and report errors.
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5) Workflow Cleaner: The workflow cleaner periodically
cancels running workflows that are created sufficiently long
ago, since they are likely stuck or were orphaned during
experiment scheduling. For example, if it takes >5 minutes
to create a workflow, the LeaseExperimentListener would
incorrectly assume that the workflow failed to launch, then
mark the experiment as ENQUEUED again to allow a scheduling
server to reschedule the experiment. We garbage collect these
workflows to avoid zombie experiments accumulating and
wasting resources.

6) Experiment Exporter: The experiment exporter periodi-
cally reads all finished experiments in the past day from the
database and exports these experiment records to a separate
datastore for data analysis [17] and persistence. It is critical
to help us understand the system usage and collect failed
experiments for triage. To avoid database read contention, the
job is scheduled daily early morning when the database has
low read traffic.

D. Protocol

Protocols are implemented as orchestration workflows and
they carry out the actual work of the system. To allow
customizing modeling changes, protocols can have parameters
and users can update these parameter values in the model regis-
tration via our CLI or Web UI. We observe that most protocols
developers have created conform to one of two templates:
a basic protocol, and a hyperparameter tuning protocol. We
have standardized the implementation of protocols to inherit
from these templates whenever possible, which significantly
increases code reuse and reduces maintenance effort. Note that
the system is not restricted to these two templates, developers
are free to define any protocol.

1) Basic Protocols: Figure 3 shows a Basic protocol.
The protocol branches a base model from the target model,
compiles and analyzes the base model to extract information
used in subsequent steps, then checks if it needs to retrain
a baseline model. If so, it initializes and submits the base
model for training, and this new model will be subsequently
used as the baseline; otherwise the target model is used as the
baseline. Retraining the target model may be needed when the
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target model is very old, which could make performance eval-
uation inaccurate after recent training service binaries releases
and other changes in the software stack. In either case, the
protocol branches from the baseline model and executes the
ApplyRecipe step to apply a change/recipe to the new model,
which creates the proposed model (highlighted in green in
Fig. 3). The protocol then initializes and submits the proposed
model for training. After both the baseline and proposed
models are have been created, the protocol waits until both
models complete training. It is possible for the ApplyRecipe
step to create an TuNAS search model as its output. In case
where TuNAS is involved, metrics measured on the model
used for the hyperparameter search are unreliable [15]. We
therefore create another model, bake in the best parameters
identified in the search, and train this static model as the
proposed model. This means that the cost of a TuNAS-based
hyperparameter search is roughly twice the cost of a regular
model training run.

Finally, after the baseline and proposed models are fully
trained, the protocol fetches and aggregates the metric values,
and reports the metrics back to the scheduling server.

The aApplyRecipe step is the main way users customize
basic protocols: Most basic protocols reuse all steps but
implement their own ApplyRecipe step. This step performs
the actual edits to the model code. We discuss details on how
we achieve robust modifications of the model in Sec. III-E.

2) Hyperparameter Tuning Protocols: Figure 4 shows a
protocol for model hyperparameter tuning. It consists of two
workflows: CreateVizierStudy and EvaluatevizierTrial
shown in Figure 4a and Figure 4b, respectively.

The createvizierstudy workflow branches a base model
from the target model, then initializes and submits the base
model. The computesearchspace step (highlighted in green in
Figure 4a) computes the hyperparameter search space based on
the target model and protocol inputs. This is the main way the
CreatevVizierstudy workflow differs for various use cases.

Next, the template creates a Vizier study given the computed
search space. The Runvizierstudy step maintains multiple



Vizier clients to orchestrate trials in parallel. Each Vizier client
initiates an EvaluatevizierTrial workflow to evaluate the
trial, using the base model as the baseline to compute the
performance delta in percentage of the trial model. Once the
Vizier study is complete, the createvizierstudy workflow
retrieves the best trials and their metric values from the Vizier
server. Finally, the protocol reports the result back to the
scheduling server.

The EvaluatevizierTrial workflow functions similarly to
a basic protocol described above, with a specific ApplyRecipe
step (highlighted in green) that applies the concrete hyperpa-
rameter values suggested by Vizier for this particular trial to
the model. It differs from the basic protocol in the way that it
handles the trial model metrics, since it has to fetch aggregated
metric values and report the results to the Vizier server. This
allows Vizier to decide the next trials based on previous trial
results. At the end of each trial, the workflow cleans up the trial
model and frees up training resources, which is essential as
hyperparameter tuning protocols can create many models, and
have a tendency to quickly occupy huge amounts of resources.

The computesearchspace and ApplyRecipe steps are the
main customization points for hyperparameter tuning proto-
cols. Different hyperparameter tuning protocols share all other
steps. The computesearchspace step extracts the hyperparam-
eter search space from user input. For example, some protocols
allow users to set the search space explicitly in their parameters
while other protocols allow users to declare the search space
in the model construction plan. The app1yRecipe step takes as
input a trial with concrete hyperparameter values, and updates
the corresponding hyperparameters in the model construction
plan or training job configuration.

The hyperparameter tuning protocols also provide for a
hierarchical search strategy, where the protocol first searches
some hyperparameters using Vizier, and each trial model is
itself a tunable model using TuUNAS, as described in [18]. Both
CreateVizierStudy and EvaluatevVizierTrial templates are
able to handle baseline/trial models which are TuNAS search
models in similar to the basic protocol: when an TuNAS search
model is detected, when training finishes, instead of using
the metrics generated by the search model, the search results
are extracted and baked into a static model which is trained
to obtain the final metrics for the baseline/trial models. The
hierarchical search strategy is a trade-off between the search
cost and flexibility. It is more resource efficient compared to
using Vizier alone while solving problems for which TuNAS
is not applicable. A simple example of a hybrid protocol is
tuning the network depth (number of layers) with Vizier while
tuning the network size (layer widths) with TuNAS.

E. Recipe

It is difficult to build a general purpose code editing tools
to modify the model construction plan. Like most programs
in the machine learning space these days, model construction
plans are written in Python. As a dynamically typed language,
modifying Python code safely is particularly challenging. The
problem is compounded by variability in coding style between
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(A) High level model rewrite.
def UpdateLearningRate (model, 1r):
o model.optimizer.learning_rate =
inputs = keras.Input(...)
outputs = keras.layers.Dense(...) (inputs)
keras.Model (inputs=inputs, outputs=outputs)
m.compile (loss="mse", optimizer="adam")
.+ UpdateLearningRate (m, 1lr=0.1)

(B) Function call interception.

.+ def DoubleEmbeddingDim(in_dim, out_dim,
o return keras.layers.Embedding (
.+ in_dim, out_dim x 2, xxkwargs)
inputs = keras.Input(...)
embedding = keras.layers.Embedding (
embedding = DoubleEmbeddingDim (

vocab_size, output_dim) (inputs)

. // Rest of the model.

(C) Tunable API.

+

1r

m =

g W NP

**xkwargs) :

0 oy U WN
+ Wl

.+ tunable.Set ({
+ "width": 64,
-+ 1)
. // Rest of the model.
width = tunable.Int (
name="width", default=32, candidates=[32, 64])
outputs = keras.layers.Dense (width) (...)
. // Rest of the model.

[e I RS NIC B IOV N

Fig. 5: Example recipes.

different teams, making it dangerous to assume common
patterns for code manipulation.

We implemented several approaches to make systematic
code edits for applying modeling changes. The design of our
system allows us to pick the most appropriate applyRecipe
step implementation, no single implementation has to be
fully general. Figure 5 shows examples of the types of code
modifications ApplyRecipe implementations perform. We use
the Keras model-building framework for illustration purposes.

The most direct way to implement a recipe is to define a
rewrite function that makes modifications to the high level
model. The applyRecipe step then simply inserts the rewrite
function definition, and calls it the end of the model con-
struction plan, possibly using protocol-provided parameters.
The function then modifies the Keras Model object in place.
Because we make modifications at the end of the file (and
therefore after the Mode1 is fully defined), we can be sure that
our modifications is final and will not be clobbered by other
parts of the code.

Figure 5 (A) shows an example that modifies model
code to update the optimizer learning rate using the
UpdateLearningRate function. Such a rewrite function typ-
ically takes as input a Model and a list of parameters, and
modifies the Model. In practice, we do not add the full
definition of the rewrite function to the model definition, but
simply import it from a public library.

Using rewrite functions has some limitations: While the
rewrite is guaranteed to produce a working model, it is not
considered particularly readable, and cannot be launched as is.
If an experiment identifies a promising model, a human has
to inline the rewrite into the model definition, e.g., changing
the learning rate in the compile call where it was originally
defined. Another limitation lies in the complexity of modifying
Models: if parts of the model we want to update are used to
build other parts of the model, it can be difficult to implement



the recipe in a rewrite function. For example, scaling the
embedding layer dimensions could change the input shape
of subsequent layers, which requires the rewrite function to
properly update all transitively dependent layer properties.

Another method for modification is function call intercep-
tion. Recipe developers define a function meant to replace a
common library function used in the model definition. The
aApplyRecipe step replaces all library function calls with calls
to the new function. For simplicity, the replacement function
has the same signature as that of the common library function
to replace with. We use an code AST representation [19] to
robustly identify and edit call sites. Figure 5 (B) shows an
example that doubles the embedding dimension of all features
using the DoubleEmbeddingDim function, which intercepts the
Embedding initializer call. Since the embedding dimension is
updated in-place, all subsequent layers are built using the
updated input shape automatically.

Not all model changes can be implemented using function
call interception, for instance, the learning rate in Figure 5
(A) is implicitly set so we cannot overwrite it via function
call interception.

If users are willing to annotate their model, we can automate
richer modeling changes. For example, our system provides a
tunable API that allows users to define hyperparameters with
search space anywhere in a model, including inside a libraries
transitively invoked in the model. The hyperparameter and its
search space is then stored in the high level model. In the
CreateVizierStudy template, the computeSearchSpace step
can extract the search space from the high level model. In
the EvaluatevizierTrial template, the aApplyRecipe step can
set hyperparameter values in the model. Figure 5 (C) shows
an example. Lines 4-8 is the original model in which a user
defines an integer hyperparameter to tune the dense layer
width. The hyperparameter has a name called width, a default
value 32 and a list of possible values [32, 64] as the search
space. The ApplyRecipe step inserts a tunable.Set function
call at the beginning of the trial model (lines 1-3) to set the
width hyperparameter to 64 in a global registry. tunable.Int
checks this global registry using the hyperparameter name,
and returns 64. We have found that because tunable.Int can
return a default value without changing the model semantics,
users are willing to annotate their models with hyperpa-
rameters proactively and use HEINZELMAENNCHEN to tune
hyperparameters when needed.

IV. RESULTS

A. Production Setup

HEINZELMAENNCHEN is deployed geographically at 3 lo-
cations in the US and each location has 3 API servers, 3
scheduling servers and 3 frontend servers that serve traffic all
over the world. This distributed setting avoids a single point of
failure. The workflow cleaner and experiment exporter jobs are
executed on a daily basis. The paper reports the performance of
the system using production data; statistics have been collected
from 04/01/2023 to 10/01/2024 (1.5 year).
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TABLE I: API request count and latency.

Latency (ms)

API Count | \00 550 p90  p99  Max
RegisterModels 6562 848 742 1311 3127 39688
GetRegistration 30206 45 17 148 305 2689
CancelRegistration 233 695 600 1360 1360 1372
SearchExperiments 64022 111 76 1254 787 14464
GetExperiment 20443 89 53 145 671 5271
CancelExperiment 540 | 1115 1017 1805 4789 7379
FinishExperiment 4348 872 777 1372 2822 10331

TABLE II: User, experiment and model count by status.

API #User(%) #Exp(%) #Model(%)
SATISFIED 104 (50.7) | 1461 (15.1) 8382 (9.2)
UNSATISFIED 117 (57.1) | 1402 (14.5) 8358 (9.2)
USER_ERROR 181 (88.3) | 3689 (38.2) 4281 (4.7)
SYSTEM_ERROR 87 (42.4) 566 (5.9) | 15142 (16.6)
DEADLINE_EXCEEDED 58 (28.3) 373 (3.9) 6434 (7.1)
CANCELED 130 (63.4) | 2157 (22.4) | 48664 (53.3)

Total 205 (100) | 9648 (100) | 91261 (100)

B. System Performance

Table I shows the number of requests and latency for each
RPC. The registerModels RPC had 6562 requests and created
9648 experiments, with an average latency of 848ms. Typically
requests that create multiple experiments require more time to
process compared to requests that create a single experiment.
The rRegisterModels RPC is also more expensive compared
to other RPCs because it writes more data to the database. The
GetRegistration, SearchExperiments and GetExperiment
RPCs are the main user-facing endpoints and therefore com-
monly used. The searchExperiments RPC backs the ex-
periment search page, which is the most visited Ul page.
All three RPCs are relatively cheap because they only read
the database. The database-modifying cancelRegistration,
CancelExperiment, and the internal FinishExperiment RPCs
are used much less, and they are slightly more expensive. The
average latency for all RPCs is less than 1.2 seconds.

Table II shows the number of users, experiments and
models by experiment status, respectively. In total, the system
was used by 205 users (46.6 monthly), and it created 9648
experiments (26.4 daily) and 91261 models (250.0 daily). The
system found promising candidate models from SATISFIED
experiments for 104 users. 117 users encountered UNSATISFIED
experiments. Note that UNSATISFIED experiments are typically
still useful, often because they disprove a hypothesis.

15.1% of experiments resulted in a SATISFIED status, mean-
ing they created viable launch candidates. In our experience,
this compared very favorably to the success rate of manual
experimentation. We credit the fact that we encode only
approaches into protocols that are likely to work broadly. This
leads to some selection bias, but it also legitimately improves
the success rate of experimentation, as developers create fewer
futile experiments.

38.2% experiments ended with USER_ERROR, as it takes
time for users to learn how to use different protocols. Most
USER_ERROR experiments are caused by user requesting metrics
that do not exist, or incorrectly annotated model components.



TABLE III: Median experiment time breakdown by status.

Status Queuing  Scheduling  Execution
SATISFIED 1.1s 102s 46h
UNSATISFIED 1.1s 131s 73h
USER_ERROR 1.1s 141s 8h
SYSTEM_ERROR 1.1s 125s 5h
DEADLINE_EXCEEDED 1.1s 118s 71%h
CANCELED 1.2s 118s 18h
Median I.Is 125s 26h

Only 5.9% experiments ended with sysTeEM_ERROR, demon-
strating the reliability of the system. Common SYSTEM_ERROR
experiments are caused by newly implemented protocols with
bugs, or system reliability issues like exhausting orchestration
resources. 3.9% experiments ended with DEADLINE_EXCEEDED,
which is most often caused by experiments never being
allocated enough resources to train models.

Table III shows the median experiment time overhead in
queuing, scheduling and execution phases, respectively, by
experiment status. Almost all ENQUEUED experiments were
scheduled immediately (median at 1.1s) as scheduling these
experiments rarely cause the number of IN_PROGRESS ex-
periments to exceed the pre-defined quota limit. The me-
dian time to schedule an experiment and create a work-
flow is 125s. The scheduling latency is dominated by the
createnWorkflow RPC latency, which is large as the orches-
tration server takes time to parse and validate the workflow
config. The execution time varies significantly for experiments
ending with different statuses. The median execution time for
SATISFIED and UNSATISFIED experiments is roughly similar,
the only difference being the result of constraint evaluation.
DEADLINE_EXCEEDED experiments take a long time to complete
by definition, they are expired after 30 days by default. This
explains why the median execution time 719 is close to 720h
(30 days). Experiments ending with errors (USER_ERROR Or
SYSTEM_ERROR) often finish quickly, as the system attempts
to detects and report errors as soon as possible.

C. Protocol Performance

Table IV shows the experiment stats of the top 10 widely
used protocols. #Exp; denotes the total number of experi-
ments. #Exp, denotes the number of experiments with result
(saTISFIED or UNSATISFIED), and % denotes the percentage of
experiments with result compared to all experiments. #Exp,
denotes the number of saTISFIED experiments, and % denotes
the percentage of sATISFIED experiments compared to all
experiments. #Model denotes the total number of generated
models. #M/#Exp denotes the number of generated models per
experiment on average. Exec, denotes the average execution
time of experiments that are finished with a result.

The set of protocols supported by the system is vast and still
growing. The ten most widely used protocols cover feature
engineering, architecture search, hyperparameter tuning, and
data engineering.

ReduceTrainingData is a simple protocol that reduces the
amount of training data used. It is one of the simplest yet most
successful techniques to save training resources.
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TrainModel i8 a simple protocol that retrains a model, which
is common when users want to check model reproducibility
or debug a model.

TuneHyperparameters is a Vizier protocol that tunes ar-
bitrary hyperparameters in the model. It is the most widely
used protocol in the system due to its generalizability.
SetHyperparameters allows users to manually set arbitrary
hyperparameters in the model, which works well when the
search space is small.

TuneShampooOptimizer replaces the existing optimizer with
Shampoo [20], and then tunes hyperparameters. ApplyMoE
applies a mixture of experts architecture [21] to a fully
connected network, and then tunes the hidden layer widths.

In terms of feature engineering, TuneEmbeddingWidths is a
TuNAS protocol that tunes the embedding dimensions of the
model. It is used for embedding dimension optimization or fea-
ture selection (it can, and will, reduce embedding dimensions
for some features to 0, effectively removing the feature from
the model). UpdateFeatures can more explicitly add, replace
or remove features from a model, while addpcn adds a deep
cross network [22] to learn feature crosses automatically.

TuNAS and hyperparameter tuning protocols have more
internal steps and require complex coordination between dif-
ferent services. They are therefore less reliable: a smaller per-
centage of experiments ends with SATISFIED Or UNSATISFIED
statuses compared to other protocols. There are some excep-
tions, €.g. TuneshampooOptimizer is used by few expert users,
and 49.8% experiments finish without errors, mostly because
this protocol’s main users appear to make fewer user errors.

Each Vizier protocol execution often create multiple trial
models, hence there are many more models associated with
these protocols. TuneHyperparameters alone created 82012
models (70.88 per experiment), and TuneShampooOptimizer
created 1434 (6.49 per experiment). TuNAS protocols on
the other hand create only one search model and one static
model, leading to much fewer models compared to Vizier
protocols. For example, TuneEmbeddingWidths created 1187
models (0.82 per experiment), and applyMoE created 534
models (0.79 per experiment). Regular protocols typically only
create a single model, leading to the least number of models,
e.g. ReduceTrainingData created 0.67 models per experiment,
and TrainModel created 0.46 models per experiment.

These numbers are a stark reminder how computationally
expensive black-box optimization techniques such as Vizier
are. Vizier experiments also take a much longer time to com-
plete due to the number of models they create (a limit on the
maximum number of concurrently training trial models is en-
forced to avoid resource contention), €.g. TuneHyperparameter
and TuneShampooOptimizer respectively take 180h and 183h
to run successfully on average. TuNAS experiments take
less time to complete but they still need to wait for the
training completion of search models before they train static
models, e.g. TuneEmbeddingWidths and ApplyMoE respectively
take 105h and 154h to run successfully on average. Regular
experiments often take the least amount of time to finish as
they train 1-2 models with maximal parallelism, e.g. addpcn



TABLE IV: User, experiment, model count and execution time for top 10 widely used protocols.

Protocol Type #User(%) #Exp:(%) #Exp,- (%) | #Exps(%) | #Model(%) #M/H#Exp | Exec,
TuneHyperparameters Vizier 71 (34.6) | 1157 (12.0) | 370 (32.0) 174 (15.0) | 82012 (89.9) 70.88 180h
TuneEmbeddingWidths TuNAS 63 (30.7) | 1449 (15.0) | 373 (25.7) 114 (7.9) 1187 (1.3) 0.82 105h

ApplyMoE TuNAS 40 (19.5) 673 (7.0) 196 (29.1) 51 (7.6) 534 (0.6) 0.79 154h
TrainModel Regular 34 (16.6) | 2324 (24.1) | 829 (35.7) | 430 (18.5) 1059 (1.2) 0.46 78h
ReduceTrainingData Regular 30 (14.6) 280 (2.9) 132 (47.1) 48 (17.1) 187 (0.2) 0.67 107h
TuneShampooOptimizer Vizier 24 (11.7) 221 (2.3) 110 (49.8) 41 (18.6) 1434 (1.6) 6.49 183h
UpdateFeatures Regular 23 (11.2) 391 (4.1) 162 (41.4) 61 (15.6) 252 (0.3) 0.64 118h
SetHyperparameters Regular 17 (8.3) 567 (5.9) 208 (36.7) 66 (11.6) 375 (0.4) 0.66 81h
AddDCN Regular 17 (8.3) 39 (0.4) 17 (43.6) 6 (15.4) 28 (0.03) 0.72 50h
TuneTpuEfficiency Vizier 12 (5.9) 222 (2.3) 75 (33.8) 40 (18.0) 2281 (2.5) 10.27 121h

and TrainModel take 50h and 78h, respectively, to run suc-
cessfully on average. In practice, other factors can also affect
the successful experiment execution time. For example, some
models are faster to train, and some models can be queued for
lacking training resources.

D. System Impact

Over the evaluation period, the system was used actively
by more than 50 teams, contributing to more than 50 model
launches. These launches included quality improvements, re-
source savings, and infrastructure migrations.

The developer velocity improvement is hard to measure, so
we interviewed tech leads whose teams used our system and
collected their feedback. Our system is particularly effective
for teams responsible for more than a handful of models.
Manually evaluate the a technique on all models is tedious
and time-consuming, and automation dramatically increases
productivity. For example, Team A, which is responsible
for maintaining more than 70 production models, saw 5x
the number of feature engineering and network architecture
launches after adopting the HEINZELMAENNCHEN. Another
team, maintaining more than 40 production models, empha-
sized that the system accelerates their model launches and
frees up developer time.

Some teams own few but very important models. These
models are particularly hard to improve as many re-
searchers/developers have been optimizing these models for
years. Those teams are surprised to see that our system can
still improve their model quality and training efficiency. For
example, hyperparameter tuning protocols with hierarchical
search found network architecture changes in the most impor-
tant Google Search Ads click-through-rate prediction model,
which significantly reduces the training cost while keeping the
quality neutral.

On the infrastructure side, the system contributes directly
to developer productivity: The training service infrastructure
team uses our system to canary their training job binaries
by ensuring model re-trains are neutral when executed on
new release candidates. The site reliability engineering team
uses our system to perform training configuration flag tuning
aiming to improve compute efficiency.

Small teams which lack the bandwidth or expertise to keep
up with recent research results benefit especially from the
knowledge that is encoded in the protocols and recipes. These
teams can apply advanced techniques without having to adapt
complex implementations to their models.

The ability to automatically find promising candidate mod-
els without writing model code saves developer time directly,
e.g., by performing edits automatically, as well as indirectly,
e.g., by avoiding errors and therefore reducing the number of
edit/test cycles. Even UNSATISFIED experiments save model
developer time. These are typically experiments that needed
to be run to validate or falsify a hypothesis, which allows
users to focus on other model optimization directions instead
of spending much effort on non-promising directions.

V. RELATED WORK

Researchers have developed a set of techniques to synthe-
size ML pipelines [10], [11], [23], [24], [25] from a pool
of primitives, which includes different classifiers, data/feature
preprocessing methods, and hyperparameters of these model
techniques, etc. These techniques often assume that the prob-
lems are unsolved and the goal is to find the ML pipeline
with the best accuracy. Their dataset is relatively small and
the generated models are relatively simple. In comparison, our
problems are challenging and many developers spend years
to solve these problems. Our models are large and complex,
trained on very large datasets. Thus, prior work cannot tackle
problems at our scale. Another difference is that our system
automates model development steps other than hyperparamter
search, and these steps are common in industry, e.g. model
initialization, submission, training and result analysis.

Google’s Vertex Al [4], Amazon’s SageMaker [3] and
Microsoft’s Azure ML [26] provide cloud ML solutions
for individual customers. These works are analogous to the
training service discussed in Section II-A. In comparison,
HEINZELMAENNCHEN is built on top of the training service,
which automates much richer ML modeling tasks at scale.

VI. CONCLUSION

In this paper, we propose HEINZELMAENNCHEN, the first
ML modeling task automation system for production models
at scale. The system is widely used by hundreds of ML
engineers and creates many revenue critical launches. We also
interviewed multiple teams and show that the system improves
developer velocity. Although we build the system for Ads
at Google, we believe that the system could provide useful
insights in general for building similar automation systems.
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