
AUnit: A Test Automation Tool for Alloy

Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid

The University of Texas at Austin, USA

Email: {allisonksullivan, kaiyuanw, khurshid}@utexas.edu

Abstract—Software models help improve the reliability of
software systems: models can convey requirements, and can
analyze design and implementation properties. A key strength
of Alloy, a commonly used first-order modeling language, is the
Alloy Analyzer tool-set. The Analyzer allows users to execute
commands over models by leveraging a fully automatic SAT-
based analysis engine. However, prior to the introduction of
AUnit – a testing framework for Alloy – users had to rely
on ad-hoc practices to validate their models. In this paper, we
present our efforts to establish a formal testing environment
in the Alloy Analyzer by creating an AUnit extension. We
present additional grammar to support test case creation, as
well as the details for executing test suites, calculating test
suite coverage, and automatically generating test suites. The tool
is available as a stand-alone executable at the following URL
(https://sites.google.com/view/aunitanalyzer).

I. INTRODUCTION

In today’s society, we are becoming increasingly dependent

on software systems. However, we also constantly witness the

negative impacts of buggy software. One way to help develop

better software systems is to leverage software models. When

forming requirements, software models can be used to clearly

communicate to all stakeholders both the desired system as

well as the environment it will be deployed in. When creating

designs and implementations, software models can help reason

over how well the design and implementation choices satisfy

the requirements. As such, software models can help detect

flaws earlier in development and thus aid in the delivery of

more reliable systems.

Alloy, a first-order declarative language based on relations,

is a well-known modeling language [1]. Alloy is designed

to be (1) easy to understand; and (2) amenable to automatic

analysis. One of the main benefits of Alloy is its integrated

development environment (IDE) based on the Alloy Analyzer.

The Analyzer provides an automated analysis environment

where developers can execute commands over a model, which

the Analyzer resolves by performing scope-bounded analysis

using off-the-shelf SAT solvers. As output, the Alloy Analyzer

reports satisfying assignments to the sets and relations of the

model such that the command’s formulas are true, known

as instances. Users can inspect these instances textually or

graphically, and evaluate expressions and formulas over these

instances using the Evaluator functionality [12].

As a lightweight formal method backed by an instance

enumerating tool-set, Alloy helps developers understand their

system by displaying the consequences, intended or not, of

their specifications, helping identify any missing or incorrect

properties, and exploring the impact of modifications. As such,

Alloy has been utilized in multiple domains, e.g. debugging

UML diagrams [5], [4], analyzing security protocols in fields

such as firewalls and HTML [6], [7], and modeling network

switches [3]. Notable recent work by Pamela Zave uses Alloy

to reveal flaws in the Chord ring-maintenance protocol [15],

which has influenced systems in industry.

However, the expected benefits of formal modeling and

analysis are reduced quite a bit if the model itself is in-

correct. In our experience, this is a valid risk. While Alloy

offers succinct formulation of complex properties, Alloy’s

expressive operators (transitive closure, quantified formulas)

can make writing non-trivial properties challenging, especially

for beginner users. Traditionally, developers gain confidence

in their code through testing. However, traditional testing

frameworks are designed for imperative, but not declartive,

languages. Consider the declarative execution environment for

Alloy. When a command is executed, there is no traditional

notion of where the “execution” starts, how it proceeds, what

conditional branches it encounters, what path it takes, and how

the values of the program variables are updated or the final

return values computed. Instead, the SAT back-end looks for

satisfying instances to the propositional formula based on the

command executed by the user.

Our recent work introduced AUnit [11], [8] for testing Alloy

models in the spirit of unit testing imperative code. AUnit

defines what a test case is, what test execution and outcome

are, and what the coverage criteria are in the context of

declarative models in Alloy. We wanted our test case structure

to allow a developer to directly test for expected behavior, i.e.

that a specific instance is properly generated (or prevented)

by any given formula. Therefore, AUnit test cases consist

of two key components: (1) a valuation used to define a

specific instance to be evaluated and (2) a command used to

identify the model formulas under test. A test passes if the

valuation is a valid instance of the command; otherwise, the

test fails. AUnit has served as a foundation for integrating

well established traditional testing techniques into Alloy such

as automated test generation [10] and mutation testing [10],

[13]. AUnit has also led to program synthesis techniques [9].

Prior work has looked to provide a basic AUnit prototype

built around the existing Analyzer’s API and noted the limita-

tions encountered [14]. This tool paper focuses on our efforts

to implement AUnit as an extension to the Alloy Analyzer,

modifying the grammar and building new functionality and

user interfaces into the Analyzer as needed. The remainder of

the paper is outlined as follows. First, we introduce an Alloy

model of a directed tree and an associated test suite to present

398

2018 IEEE 11th International Conference on Software Testing, Verification and Validation

978-1-5386-5012-7/18/$31.00 ©2018 IEEE
DOI 10.1109/ICST.2018.00047

Fig. 1: AUnit Test Case

(Test0)

(a) (b)

N0

N1

edges

edges
1 pred Val0 {
2 some disj N0, N1 : Node {
3 Node = N0 + N1
4 edges = N0->N0 + N0->N1
5 }
6 }

(c)
Test0: run { Val0[] and !isDirectedTree[] }

essential background concepts. Then, we highlight changes to

the Analyzer’s grammar to support the core AUnit functional-

ity. Next, we demonstrate how to use these features to create,

execute and calculate coverage for a test suite. We also outline

support for AGenCov , a coverage-directed input generation

technique. Support for AGenCov is included to automate input

generation in order to help facilitate a comprehensive testing

environment for Alloy. Lastly, we highlight the lessons we

learned adapting our research into a prototype tool.

II. BACKGROUND

In this section, we will first introduce an illustrative, but

simple, example Alloy model. Then, we will step over: (1) an

example test case, (2) the corresponding coverage for that test

case and (3) a test case generated using AGenCov . Further

details about AUnit can be found in [11] while further details

about AGenCov can be found in [10].

A. Example Model: Directed Tree

Consider the following model of a directed tree:
1 sig Node { edges: set Node }
2 pred isDirectedTree {
3 no iden & ^edges --acyclic
4 edges.~edges in iden --injective
5 Node->Node in ^(edges + ~edges) --connected
6 }

Line 1 encompasses a signature (‘sig’) paragraph, that

introduces the named set Node. Node contains one binary

relation “edges”, which relates each Node to one or more

other Node elements, forming the edge(s) of the tree. From an

object oriented perspective, this can be thought of as declaring

a Node class with an edges attribute. Lines 2 - 6 outlines the

predicate (‘pred’) paragraph “isDirectedTree” that con-

tains the logic for the model to produce only directed trees: line

3 outlines acyclicity to prevent self-loops, line 4 forces edges

to be a one to one function, and line 5 ensures any element in

Node is connected to the tree. These statements are achieved

using a subset of the Alloy syntax, specifically: set multiplicity

(‘no’), the identity relation (‘iden’), set intersection (‘&’),

transitive closure (‘ˆ’), relational join (‘.’), transpose (‘ ’),

subset (‘in’), relational product (‘->’) and set union (‘+’).

The complete Alloy grammar can be found at [2].

Now, consider what test cases we might create for this

model. For instance, we could start by checking if a cyclic tree

is prevented by using the test case outlined in Figure 1. The

TABLE I: Coverage provided by Test0

Construct Coverage
Node |s| ≥ 2
edges |r| ≥ 2
no iden & ^edges f = false
iden & ^edges |e| = 1
iden |e| ≥ 2
^edges |r| ≥ 2
edges.~edges in iden f = true
edges.~edges |e| = 1
Node->Node in ^(edges + ~edges) f = true
Node->Node |e| ≥ 2
^(edges + ~edges) |e| ≥ 2
edges + ~edges |e| ≥ 2
~edges |e| ≥ 2

valuation is given both graphically (a) and textually (b), while

the command is listed on the bottom (c). Note that a valuation

simply outlines the shape of an instance. If the valuation

were to be executed, there is only 1 possible instance that

can be generated. Running “Test0” returns a passing result,

increasing our confidence that isDirectedTree generates

acyclic trees. Notice, our command is “!isDiredtedTree”.

Using the negation of a predicate indicates that we expect the

valuation to not be generated by the predicate. The command

can be any valid Alloy command.

AUnit also supports declaring partial valuations in which

the user outlines some sets and relations in the model, and

the SAT solver defines the rest. Partial valuations can lead

to multiple instances when executed. For example, we could

write the following test case to check our connectivity formula:

1 pred Val1 { !(lone Node) and no edges }
2 Test1: run {Val1[] and !isDirectedTree[]} for 5

In this case, our valuation outlines any instance in which

there are at least 2 Node elements and an empty edges

relation. Our command then checks that all such instances

are invalid directed trees. Note, our command now specifies a

scope (‘for 5’). The Alloy Analyzer uses the scope to provide

an upper bound on the universe of discourse to the SAT solver.

All commands are run with a default scope of 3, unless the

user specifies otherwise.

AUnit also introduces coverage criteria for the different

constructs of an Alloy model. The coverage provided by

Test0 can be seen in Table I. AUnit coverage criteria look for

the test suite’s valuations to cover a range of shapes. For set

based constructs (signatures (s), relations (r) and expressions

(e)), the criteria relate to the size of the set produced by the

valuation. For formula (f) based constructs, the criteria relate

to the truth evaluation produced by the valuation.

B. Coverage-Based Test Suite

AUnit test cases can be automatically generated by in-

crementally producing valuations that satisfy new coverage

requirements. To do this, one can append an Alloy formula

that explicitly requires an uncovered requirement to be true.

Then, by executing this formula, the SAT solver generates an

instance, which we can use to start forming test case(s). The

399

command will be any paragraph in which the valuation covers

a new criteria. Test generation terminates when all feasible

criteria have been covered. For instance, we can generate a

test to cover the requirement that a signature must evaluate to

the empty set (‘|s| = 0’) for the signature Node. To do this,

we would append ‘#Node = 0’ to our model, execute the

formula, and use the first instance found, the empty instance,

as test’s valuation. This would result in the following test case:

1 pred Val2 { no Node and no edges }
2 Test2: run { Val2[] and isDirectedTree[] }

The generated test case’s command is isDirectedTree

because: (1) the valuation is an instance of this paragraph,

and (2) new criteria for isDirectedTree is covered by this

valuation, e.g. “#iden = 0”.

III. EXTENDING THE GRAMMAR

When defining AUnit, our goal was to think conceptually

about what would be a useful definition of a test case. When

it came to adding a test case to a model, we looked to work

with the existing supported grammar of Alloy. As a result,

we would add a valuation as a named predicate paragraph in

which the name had to start with “Val”, and a command as an

Alloy command in which the label had to start with “Test”.

However, now that we are looking to provide a comprehensive

AUnit environment within the Analyzer, we can extend the

Analyzer’s grammar to provide a native, rather than ad-hoc,

support. To achieve this, we have added three new extensions

to the Analyzer’s grammar: one to support declaring a test’s

valuations and two to support declaring a test’s command.

A. Handling Valuations

To enable a user to easily specify a valuation, we have

added a new paragraph type indicated by the keyword “val”.

A valuation paragraph does not allow for any parameter

declarations, must be uniquely named, cannot have a return

value, and consists of a block of constraints. There are no

restrictions on the types of formulas which can appear in

a valuation, enabling the user to specify complete as well

as partial valuations. As an example, consider Test0 from

section II. We would now declare our valuations as follows:
1 val SelfLoop {
2 some disj N0, N1 : Node {
3 Node = N0 + N1
4 edges = N0->N0 + N0->N1 }
5 }

Aesthetically, there is not much difference between the two.

However, there are several advantages to creating a dedicated

paragraph type: the overall readability of the test case is

improved, the user can provide better naming structures, e.g.

“Val0” becomes “SelfLoop”, and sanity checks can easily

be supported within the Analyzer, e.g. ensuring a test case has

referenced a valuation.

B. Handling Commands

To handle a test’s command, we introduce two new at-

tributes to Alloy. First, the “@Test” keyword denotes which

Alloy commands are actually test cases. The “@Test” keyword

must appear before any command label that is intended to be

a test. For example, Test0’s command would become:
@Test Test0: run {SelfLoop[] and !isDirectedTree[]}

The second, “@cmd:{...}”, is a wrapper formula which

allows for embedding a test case’s command in the valua-

tion paragraph. Any formulas within the curly brackets are

marked as part of the AUnit test command. This functionality

is particularly important in order to test predicates which

have parameters. For example, consider adding the following

paragraph to our model:
1 pred Reachable(start: one Node, end: one Node) {
2 end in start.^edges
3 }

How would we write a test for the predicate? If we simply

do the following:
@Test IsReachable:
run { SelfLoop[] and Reachable[N0, N0] }

The Alloy Analyzer will throw a compilation error, as

there is no globally defined “N0” to be found. When passing

parameters to a function call, the Analyzer needs to be able to

discover the variables used. As a result, the command must be

defined where the variables are defined, which means it must

be declared in the ‘val’ paragraph structure. Therefore, we

can use “@cmd” as follows:
1 val SelfReachable {
2 some disj N0, N1 : Node {
3 Node = N0 + N1
4 edges = N0->N0 + N0->N1
5 @cmd{ Reachable[N0, N0] } }
6 }
7 @Test IsReachable: run SelfReachable

The command of a test case can be any Alloy formula;

therefore, we cannot just assume that any set equality (‘=’)

declaration in a valuation paragraph outlines the valuations,

and all other formulas are part of the command. By allowing

the user to clearly express which formulas are part of the

command, the introduction of the “@cmd” ensures that the

user’s true intentions are conveyed.

IV. AUNIT ANALYZER USER INTERFACE

The AUnit extension to the Alloy Analyzer is released as a

stand alone jar – named the AUnit Analyzer – and is built on

top of the existing Alloy Analyzer. All functionality provided

in the latest stable release of the Analyzer is preserved. Our

extension adds an additional usage scenario to the tool-set:

AUnit testing. To see how this is achieved, we can look at

how the new features can be applied together to test a model.

In the Alloy Analyzer, the left pane is used to display the

current Alloy model, while the right pane is used to display

logging information. All AUnit-based results, except coverage-

based highlighting, are designed to be displayed as different

result tabs in the right pane. Throughout this section, we will

be working with the directed tree model from section II and

the tests we outline there (Test0, Test1, and Test2).

A. Executing a Test Suite

To run an AUnit test suite, one can either (a) select “Execute

Test Suite” from the “AUnit” menu or (b) select the “AUnit”

400

Fig. 2: AUnit Test Execution Results

icon from the icon menu bar. Before executing any tests,

the Analyzer will make a series of syntactic checks, such

as ensuring that each test is uniquely named or that each

test references one valuation. However, multiple tests can

reference the same valuation. We do not enforce that a test

case has an explicit command, in order to allow users to

test just the facts of the model. Upon completion, the “AUnit

Results” display tab will automatically populate the right pane.

Figure 2 shows the “AUnit Results” report for our current

test suite. The summary starts with a high level picture:

how many tests passed/failed/produced an error, and the total

execution time. Then, users can examine the details of each

test, namely: the valuation, the command, the execution time,

and the result. The “view valuation” action will produce

a new pop-up window in which the user can examine the

valuation textually or graphically. Since a fact formula must

always be true, the command displayed will reflect both the

user specified command, as well as any fact formulas in the

model. By default, all passing tests are displayed with their

information collapsed and all failing tests are displayed with

their information expanded. To show the reporting structure,

Test2 has been expanded in Figure 2.

B. Calculating Coverage for a Test Suite

In the AUnit drop-down menu, there are two coverage

options. First, one can toggle whether or not coverage is

calculated for a test suite (“Calculate Coverage:”). Second,

one can toggle whether or not to highlight the model according

to the calculated coverage information (“Highlight Model:”).

Figure 3 show the model coverage highlighting produced by

our running example, in which green means covered, yellow

means partially covered and red means not-covered. Valuation

paragraphs and command paragraphs do not get highlighted.

After successfully executing the test suite, if “Calculate

Coverage” is toggled to “Yes”, the Analyzer will calculate

model coverage for the entire model, regardless of which

paragraphs were explicitly tested. Additionally, coverage is

propagated: if a predicate invokes another paragraph, then

the Analyzer checks to see what criteria are covered for the

invoked paragraph. Figure 3 shows this information for our

running example, which is displayed in the “Coverage Results”

tab in the right pane. Coverage information is displayed by

paragraph. For each paragraph, the coverage percentage is

displayed on the right, and all of the constructs are listed

below. Each construct shows its current coverage status (e.g.

green dot means all the coverage criteria have been met) and

each construct can be expanded to show the coverage status

for all of its criteria, e.g. construct “Node” is expanded in

Figure 3.

C. Coverage-based Test Generation

Prior work has shown AGenCov to be efficient at producing

small but robust test suites capable of detecting real-world

faults [10]. Therefore, to help developers start integrating

AUnit testing into their development practices, we wanted

to support AGenCov within our extension. To automatically

generate test cases, the user can select (a) the “Generate Test

Suite” option from the “AUnit” drop-down menu or (b) the

“Test Gen” icon from the icon menu bar. Then, a pop-up

window (Figure 4(a)) appears which asks the user to specify:

(1) the model, (2) the paragraphs of interest (which signatures

and predicates to generate tests over), and (3) the scope to

be used. Once the test suite has been generated, the user

is given the choice to label the expected behavior for the

test cases. AGenCov is an input generation technique: the

valuations and commands pairs are automatically generated,

but a human oracle is needed to say whether the behavior

matches expectation or not. Figure 4(b) shows the interface

that enables user to label test cases. The top pane displays

the test case and asks the user if the valuation should be an

instance of the listed command. To help the user properly

label test cases, the bottom pane displays the valuation on the

left and the model on the right. Users can view the valuation

graphically, textually, and in a tree format.

D. Small Feature Changes

To bring AUnit to active Alloy users, building support in the

Alloy Analyzer is the most direct path: the Analyzer is the offi-

cial development environment for Alloy. In fact, one of the key

strengths of Alloy as a language is the Alloy Analyzer itself.

A common limitation of lightweight formal methods is often

their lack of robust tool support compared to development

environments that many programmers are familiar with, e.g.

Eclipse or NetBeans for Java. The Analyzer provides a strong

initial basis for Alloy development: a model editor interface

with syntax highlighting, an execution environment, unsat-core

highlighting, and the ability to inspect and evaluate instances

from successfully executed commands.

However, for new users who are already struggling to learn

the language, a development environment that lacks a handful

of small low-level usage features can make the tool appear

cumbersome, adding to the users frustration. Therefore, as

we looked to incorporate AUnit, we also set out to provide a

handful of small feature upgrades. First, we added a right-click

menu for the model editor pane that supports many of the basic

editing functions such as: copy, paste, undo, save, etc. Second,

we added line numbers to the editor pane, enabling easier

syntax debugging when a user get a compilation error. Lastly,

we added close icons for tabs. The Analyzer does allow users

401

Fig. 3: AUnit Test Suite Coverage Results

Fig. 4: AGenCovTest Generation GUI

(a) (b)

to have multiple models opened on separate tabs. However, in

order to close the tab, one would have to have the tab actively

displayed, go to the ‘File’ menu, and select ‘Close.’

None of these features are necessary for the tool to func-

tion; however, they are small quality-of-life features that help

smooth out a user’s experience, especially if the user is already

struggling with an unfamiliar language.

V. LESSONS LEARNED

As we moved AUnit from the research world to the Alloy

development world, we learned several lessons along the

way. First, we discovered that we would have to merge our

theoretical approach with the existing physical implementa-

tion. One big difference to reconcile was that the code-based

implementation of Alloy does not view constraints in the

same way that we did when we derived our coverage criteria.

In AUnit, constraints which evaluate to sets are regarded as

expressions and constraints which evaluate to true and false

are regarded as formulas. We made this distinction because we

naturally envisioned different coverage requirements for each.

However, to the Alloy Analyzer, this distinction is irrelevant.

402

To account for this, we simply created our own abstract

syntax tree which we use to find all coverage criteria for a

model. Another common issue we ran into was that the current

implementation of Alloy does not track as much information

as we needed to fully support AUnit’s coverage features.

Therefore, we increased the information collected natively as

the model is parsed.

Second, to design AUnit so it can in future handle most

Alloy models, we considered support for the Alloy language

at large. When we initially conceived of AUnit, we focused

on a subset of the Alloy grammar centered around predi-

cates and assertions. For instance, we did not think about

abstract signatures or the impact of importing one model into

another. To provide a seamless test environment, for all the

supported functionality in the Analyzer, we had to ensure that

AUnit either (1) supported the functionality or (2) ignored

the functionality, allowing the user to still test all the AUnit

supported aspects of the model. This included figuring our how

AUnit tests should work for functions. Function paragraphs are

different from predicates and assertions in that: (1) a function

evaluates to a set and not a boolean value, and (2) is intended

to return this set. Functions can be tested by specifying

the AUnit command as follows: “‘func invocation’ =

‘anticipated return value’”. However, AGenCov ig-

nores functions for now.

Lastly, we had to learn how best to translate our research

efforts into an intuitive and helpful user interface. This pushed

us to view AUnit from the perspective of what an end-user

would care about, separate from our focus and bias as creators

of AUnit. For instance, while we had answered what an AUnit

test case should be, we had to address the question: “If a test

case fails, what information is useful to report?” This lead

to a series of design decisions for the “AUnit Results” tab.

First, we made the assumption that a user is more interested

in digging through why a test failed than why a test passed.

Therefore, the default display for a failing test is to start

with its information expanded while a passing test starts with

its information collapsed. Second, based on the assumption

that the valuation is easier to debug graphically, we included

a “view valuation” link so that a user can quickly inspect

the valuation. As another example, when adding support for

AGenCov , we had an opportunity to set up a user interface

to facilitate the user providing the human oracle that the

approach requires. This interface (Figure 4(b)) is not necessary

to provide full technical support for AGenCov . However, as a

user, this interface is very desirable.

VI. CONCLUSION AND FUTURE WORK

Alloy is used by many developers to model system designs,

and the Alloy Analyzer provides developers with a fully

automatic analysis engine to explore their models. AUnit

introduced the first framework to provide developers with

a systematic approach to test their models. This tool paper

introduces our efforts to bring AUnit into the Alloy develop-

ment world by packaging AUnit as an extension to the Alloy

Analyzer. Our initial extension introduces support for test

creation, test execution, coverage calculations, and automated

input generation. Our hope is that AUnit opens the door for

the development of both new testing environments as well as

development environments in future Alloy Analyzer releases,

and that these front-end improvements helps further increase

the usage of Alloy and its applications in developing more

reliable software.

In future iterations of our AUnit extension, we envision four

main feature additions. First, we want to provide support for

the remainder of the Alloy grammar, namely by including a

more direct test structure for function paragraphs. Second, we

would like to provide support for users to input valuations

graphically, rather than requiring users to provide the textual

format. Third, we would like to build up more functionality

for partial valuations. Currently, the SAT back-end is used to

fill in the holes of a partial valuation, forming one complete

valuation. However, a partial valuation typically represents

multiple complete valuations. We would like to include an

interface in which the user can iterate over the completed

valuations found by the SAT solver, and incrementally extend

the test suite and add to coverage as desired. Lastly, we would

like to allow the user to choose the level of granularity and the

type of coverage used to both calculate coverage and generate

test suites.

ACKNOWLEDGMENT

We thank Jiaolong Yu, Darko Marinov, and Razieh Nokhbeh

Zaeem for helpful comments and detailed discussions. This

research was partially supported by the US National Science

Foundation under Grant No. CCF-1718903.

REFERENCES

[1] D. Jackson. Alloy: A lightweight object modelling notation. ACM
TOSEM, 2002.

[2] D. Jackson. Alloy a language and tool for relational models. http:
//alloy.mit.edu/alloy/index.html, 2012.

[3] F. A. Maldonado-Lopez, J. Chavarriaga, and Y. Donoso. Detecting
network policy conflicts using Alloy. In ABZ, 2014.

[4] S. Maoz, J. O. Ringert, and B. Rumpe. CD2Alloy: Class diagrams
analysis using Alloy revisited. In MODELS’11, 2011.

[5] S. Maoz, J. O. Ringert, and B. Rumpe. CDDiff: Semantic differencing
for class diagrams. In ECOOP’11, 2011.

[6] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
The Margrave tool for firewall analysis. In LISA’10, 2010.

[7] N. Ruchansky and D. Proserpio. A (not) nice way to verify the openflow
switch specification: Formal modelling of the openflow switch using
Alloy. SIGCOMM, 2013.

[8] A. Sullivan. AUnit - a testing framework for Alloy. Master’s thesis,
University of Texas at Austin, 2014.

[9] A. Sullivan. Automated Testing and Sketching of Alloy Models. PhD
thesis, University of Texas at Austin, 2017.

[10] A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid. Automated test
generation and mutation testing for Alloy. In ICST, 2017.

[11] A. Sullivan, R. N. Zaeem, S. Khurshid, and D. Marinov. Towards a test
automation framework for Alloy. In SPIN, 2014.

[12] E. Torlak and D. Jackson. Kodkod: A relational model finder. In TACAS,
2007.

[13] K. Wang. muAlloy – an automated mutation system for Alloy. Master’s
thesis, University of Texas at Austin, 2015.

[14] J. Yu. A prototype implementation of the AUnit test automation
framework for Alloy. Master report, 2017.

[15] P. Zave. Using lightweight modeling to understand chord. SIGCOMM
Comput. Commun. Rev., pages 49–57, 2012.

403

