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Abstract—Good API design enables many clients to effectively
use the core functionality implemented by the APIs. For real-
world applications however, correctly using the APIs and identi-
fying what methods to use and how to invoke them appropriately
can be challenging. Researchers have developed a number of API
synthesis approaches that enable a semantically rich form of API
completion where the client provides a description of desired
functionality, e.g., in the form of test suites, and the automatic
tools create method sequences using the desired APIs based on
the given correctness criteria (e.g., all given tests pass). However,
existing API synthesis approaches are largely limited to creating
single basic blocks of code and do not readily handle multiple
blocks in the presence of loops (or recursion) and complex test
executions. A key issue with handling multiple blocks is the very
large space of possible method sequences and their combinations.

This paper introduces EDSYNTH, an API synthesis approach
that explores the sequence spaces on-demand during the test
execution; that is, the given tests not only provide a validation
mechanism – as is common in test-driven API synthesis – but
also play a vital role in guiding the space exploration by helping
prune much of it. EDSYNTH follows the spirit of recent work
on test-execution-driven synthesis and lazily initializes candidates
during the execution of given tests where the part of the candidate
completion that is actually executed directly determines the
generation of future candidates. To further optimize the space
exploration, EDSYNTH ranks API candidates based on a set of
pre-defined heuristics.

We evaluate EDSYNTH’s ability to synthesize complex APIs in
the presence of conditional statements, loops and multiple basic
blocks. The experimental results show that EDSYNTH is effective
at handling synthesis tasks with multiple API sequences in both
the conditions and bodies of loops/branches; moreover, when
applied to synthesis of straight-line code, EDSYNTH compares
well with a state-of-the-art API synthesis tool that only handles
straight-line code. The experiments show that EDSYNTH’s rank-
ing strategies help reduce synthesis time by 43%.

I. INTRODUCTION

Good API design enables many clients to effectively use the

core functionality implemented by the APIs. For real-world

applications however, correctly using the APIs in general, and

identifying what methods to use and how to invoke them

appropriately by providing valid values for all parameters

in particular, can be challenging. Prior work shows that

even experienced programmers might spend hours trying to

understand how to use a simple API [1].

To facilitate writing code against complex APIs, researchers

have developed a number of approaches [1]–[7] to support

synthesis of code fragments that make appropriate use of the

APIs and provide a semantically rich form of API completion.

For effective space exploration, some synthesis techniques

require users to provide queries in natural language [6], [7]

as correctness criteria and synthesize a suitable code fragment

that satisfies the given query. Other API synthesis techniques

rely on existing code corpus to suggest “statistically similar”

code [1], [4], [5] based on the context similarity [2], [8],

which assume that a similar API usage already exists in the

code base. More recent work on SYPET [3] uses SAT solvers,

graph-reachability analysis and Petri nets to synthesize method

sequences with respect to given test suites. While existing

synthesis approaches for complex APIs are well-founded and

handle various practical synthesis problems, previous work is

largely limited to creating single basic blocks of code and does

not readily handle multiple blocks in the presence of loops

(or recursion) and complex tests. A key issue with handling

multiple blocks is the very large size of the space of possible

method sequences and their combinations.

This paper introduces EDSYNTH, a synthesis approach for

creating code fragments that comprise of method sequences

for multiple basic blocks against complex APIs with re-

spect to given test suites, which characterize the expected

behavior of synthesized fragments. Our key insight is to

explore the method sequence spaces on-demand – during

test execution; therefore, the given tests not only provide a

validation mechanism – as is common in test-driven synthesis

– but also play a vital role in guiding the space exploration

by helping prune much of it. EDSYNTH lazily initializes

candidates during the execution of given tests where the part

of the candidate completion that is actually executed directly

determines the generation of future candidates. To illustrate,

consider synthesizing a while-condition and the body of the

while-loop, if a test execution returns a false value for while-

condition, all combinations of the while-loop body are pruned

from the search, which may contains thousands of candidates.

Such lazy candidate generation is particularly useful in loops

and conditionals, where the part of the candidate that is

actually executed directly determines the generation of future

candidates. This foundation enables EDSYNTH to naturally

support API synthesis in conditionals and loops, as well as

synthesizing multiple API blocks without any special handles

compared to traditional synthesizing techniques [9]–[15].

Given a partial program (i.e., sketch [15]) with unknown

method sequence fragments (“holes”) and a test suite that char-

acterizes the correctness specification, EDSYNTH compiles a

sketch once which may represent thousands of candidates, exe-

cutes the test suite against the sketch and dynamically selects
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candidates to fill in the “holes” of the incomplete program

using the EDSKETCH synthesis engine [16]. Whenever the

test execution raises a failure (runtime failure or test failure),

EDSYNTH backtracks the search immediately and fetches the

next candidate until the space of candidates is exhausted or a

complete program that satisfies all tests is found. EDSYNTH

handles the combinatorial explosion issue with the runtime

information of the test execution.

To further expedite the search process, EDSYNTH ranks

candidates using a set of heuristics that fit particularly well

with on-demand candidate generation. E.g., when EDSYNTH

initializes a candidate of the method invocation, if there does

not exist any arguments or intermediate values that are in the

type of a method parameter, this API is ignored as one of its

parameters cannot be initialized based on the Java semantics.

To evaluate EDSYNTH, we first demonstrate its ability

to synthesize API sequences in loops and conditionals as

well as synthesizing multiple blocks of APIs with 12 API

synthesis tasks. EDSYNTH completes all tasks in an average

of 4 minutes, while 75% are completed in 1 minute. We

then compare EDSYNTH with a state-of-the-art API synthesis

tool called SYPET using 38 straight-line tasks in loop-free

programs since SYPET only handles straight-line tasks. Within

a time limit of 30 minutes, EDSYNTH completes 30 tasks in

an average of 67 seconds, while SYPET completes 34 tasks

in an average of 53 seconds with advanced graph-reachability

analysis. We also discuss our effort to extend an existing API

synthesis technique SYPET for conditionals and loops, aiming

to illustrate the fundamental hardness of this extension for

the traditional test-based API synthesis technique. We finally

investigate the efficacy of our prioritization strategies, and the

result shows that these strategies effectively reduce 43% of the

synthesis time.

This paper makes the following contributions:

• Synthesizing API sequences with Loops and Condi-
tionals. We introduce a novel approach to synthesize

multiple API sequences at different control points, es-

pecially in loops and conditionals where one test may

reach multiple basic blocks to synthesize;

• Lazy Candidate Exploration for API Sequences.
EDSYNTH builds on test-execution-driven synthesis [16]

to substantially prune a large number of API sequence

candidates and naturally supports API synthesis in loops

and conditionals. On-demand candidate generation is par-

ticularly helpful where the previously executed candidates

in conditions directly determine the generation of next

candidates in the loop bodies;

• Prioritization Strategies. We introduce ranking strate-

gies to prioritize candidates based on heuristics that

work in synergy with on-demand candidate generation.

The experimental results show that our strategies can

effectively expedite the search process.

II. BACKGROUND AND ILLUSTRATIVE EXAMPLES

In this section, we first define the problem of API syn-

thesis using a straight-line example in loop-free program. To

(A) A method that contains an unknown API sequence

//Compute the ith eigenvalue of a matrix
1.Vector2D eigenvalue(RealMatrix arg0, int arg1) {
2. //Synthesize a sequence of APIs

//for desired functionality
3.}

(B) A given test case that specifies the desired behavior

1.public static boolean test0() throws Throwable {
2. double[][] mat = new double[][]{{0,-20},{10,10}};
3. RealMatrix matrix = new Array2DRowRealMatrix(mat);
4. Vector2D result = eigenvalue(matrix, 0);
5. Vector2D target = new Vector2D(5,5*Math.sqrt(7));
6. return Math.abs(result.getX()-target.getX())<1e-6
&& Math.abs(result.getY()-target.getY())<1e-6;

7.}

(C) Input configuration JSON file for SYPET written by users

1. {
2. "methodName": "eigenvalue",
3. "srcTypes": [ "RealMatrix", "int"],
4. "paramNames": ["arg0", "arg1"],
5. "tgtType": "Vector2D",
6. "packages": ["org.apache.commons.math3.linear"],
7. "testPath": "TestSource.java"
8.}

(D) Input sketch for EDSYNTH with similar information

1.Vector2D eigenvalue(RealMatrix arg0, int arg1) {
2. EdSynth.INVOKE(0) /* Hole ID*/
3. .addParameter(RealMatrix.class, arg0)
4. .addParameter(int.class, arg1)
5. .setReturnType(Vector2D.class)
6. .addPackage("org.apache.commons.math3.linear")
7. .invoke();
8.}

(E) A solution generated by EDSYNTH based on the test suite

1.EdSynth.INVOKE(0)
2. EigenDecomposition res0 = new

EigenDecomposition(arg0);
3. double res1 = res0.getImagEigenvalue(arg1);
4. double res2 = res0.getRealEigenvalue(arg1);
5. Vector2D res3 = new Vector2D(res2, res1);
6.return res3;

Fig. 1. A synthesis example of straight-line API sequence

illustrate the limitation of existing API synthesis techniques

on loops and conditionals, we present a synthesis task that

involves unknown APIs on both the while-condition and the

body of the loop. Lastly, we present our preliminary study

on the usage of APIs in loops and conditionals using a set

of large-scale open source projects. The examples used in

this section come from the Apache-Math library [17], which

consists of 95k lines of code, 541 classes, and 5k methods.

A. Problem Definition

API synthesis is an approach that generates a sequence of

method invocations to perform a desired functionality based

on the given input types, arguments and the output type of

the API sequence. Similar to other API synthesis tools [2],
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[3], EDSYNTH defines the desired behavior as the satisfaction

of all test cases. We present an example of the API synthesis

in Figure 1 (A), which tries to create an API sequence to

compute the ith eigenvalue of a matrix. Several test cases

are provided as correctness criteria and we highlight one of

them in Figure 1 (B). This example is brought from the

evaluation of SYPET [3], a state-of-the-art API synthesizer

that compares favorably with other synthesis tools [2], [18].

The authors find this task by mining the StackOverflow forum

where developers post their questions and seek for the answers.

This API synthesis task is not trivial and even experienced

developers spend hours trying to solve the problem [1], [3].

In this scenario, developers know visible objects, have ideas

about the scope of the relevant APIs and can specify the output

type they plan to receive as the output of the API sequence.

Considering the large number of method invocations provided

by the open source projects, the search space of candidates1

for this example can be as large as 1015.

We show an input configuration file for SYPET in Fig-

ure 1 (C). SYPET asks for the visible variables, libraries

that specify the scope of the API exploration as well as the

output type of the API sequence. Figure 1 (D) presents the

input of EDSYNTH for the same synthesis task. In order to

complete a desired task, developers use EdSynth.INVOKE()

methods provided by EDSYNTH to register visible variables

(addParameter()), define the scope of API exploration

(addPackage()) and set the target type of the API sequence

(setReturnType()). This example indicates that the input

for EDSYNTH is also required by other techniques.

API synthesis tools return a desired method sequence that

satisfies the given test suite. Figure 1 (E) presents a synthesized

method sequence from EDSYNTH that pass all test cases. This

solution is semantically identical to the result from SYPET

using the same test suite. Given that our experimental envi-

ronment is different from SYPET, we could not fully replicate

their experiments. Based on their report, SYPET completes

this task in 164 seconds. Using our machine, EDSYNTH

synthesizes the desired API sequence in 62 seconds whereas

SYPET throws an out of memory exception.

B. Synthesizing API Sequences in Loops and Conditionals

Figure 2 presents a task that synthesizes both the condition

and the body of the while-loop using API sequences. Existing

techniques [1]–[3], [18] do not handle multiple API blocks in

loops or if-branches where one test may reach multiple basic

blocks to synthesize. In this example, developers try to use a

vector iterator to conduct the element-by-element division for

a RealVector and returns an OpenMapRealVector object.

Shown as Figure 2 (A), with the insight that the element-

by-element division requires a while-loop, developers write a

code skeleton with a while-loop and leave the condition and

the body as “holes”. To specify the expected behavior of the

synthesis task, users provide a suite of test cases and Figure 2

(B) highlights one of them written in JUnit framework. Taking

1We describe how we calculate this space in Section IV

(A) A code skeleton that has APIs in both loop condition and body

1.public OpenMapRealVector ebeDivide(RealVector v){
2. checkVectorDimensions(v.getDimension());
3. OpenMapRealVector res = new

OpenMapRealVector(this);
4. Iterator iter = res.entries.iterator();
5. while(/*Hole 0*/(Boolean)EdSynth.INVOKE(0)...){
6. /*Hole 1*/ EdSynth.INVOKE(1)...;
7. }
8. return res;
9.}

(B) A test case written in the JUnit framework

@Test
1.public void testBasicFunctions() {
2. RealVector v_ebeDivide = v1.ebeDivide(v2);
3. double[] result_ebeDivide = {0.25d, 0.4d, 0.5d};
4. assertClose("compare vect",v_ebeDivide.getData(),

result_ebeDivide, normTolerance);
5.}

(C) A solution generated by EDSYNTH that passes all tests

1. EdSynth.INVOKE(0):
2. iter.hasNext()
3. EdSynth.INVOKE(1):
4. iter.advance();
5. Object o1 = iter.key();
6. Object o2 = divideVal(v, itr);
7. res.setEntry(o1, o2);

Fig. 2. An API synthesis example with multiple APIs in a loop

a program sketch that specifies the high-level user insight

and a suite of test cases that define the expected behavior,

EDSYNTH completes the low-level implementation details for

the synthesis task.

Figure 2 (C) presents a solution generated by EDSYNTH that

satisfies all test cases. This solution is semantically identical

to the original implementation in the library based on the

manual inspection. The search space of candidates for this

API synthesis task can be as large as 9.4 billion and EDSYNTH

finds this solution in 16 seconds (including compilation and

test execution time) after exploring 7.6k candidates.

C. Preliminary Study of APIs in Loops and Conditionals

We discuss our preliminary study on the use of APIs in

conditions and bodies of loops and conditionals where one test

may reach multiple basic blocks to synthesize. We first select

top 10 popular Java projects from Github, following the spirit

of prior works [19], [20]. Github is a widely-used repository

for open source projects that allows users to mark the projects

they are interested in with stars. Leveraging Github API, we

construct a dataset of Java projects and sort them by their

number of stars. The entire dataset contains 3m lines of code,

31k classes and 251k methods.

Using this small but representative dataset, we calculate

the number of conditions with APIs for loops (while loops

and for loops) and if-else branches. Our result shows that

29% of loops and 41% of if-branches use APIs in their

conditions. And for these loops and if-branches that have APIs
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in their conditions, almost all of them have at least one method

invocations in the body of loops or branches, and 59% have

more than one consecutive APIs in their body. Although our

dataset is relatively small, our preliminary study brings the

attention to extend the scope of API synthesis: APIs have

been widely adopted in the conditions and bodies of loops

and if-branches. To the best of our knowledge, none of the

existing API synthesis techniques supports API synthesis for

conditions and bodies of loops or if-branches where one test

may reach multiple basic blocks to synthesize.

III. APPROACH

In this section, we explain how we synthesize API se-

quences during the test execution that naturally supports loops

and conditionals. We then discuss our prioritization strategies

that aim to expedite the synthesis process.

A. Synthesizing During Test Execution

EDSYNTH takes a sketch with holes and a given test suite as

input, trying to fill all holes and generate a complete program

such that all test cases pass. User specifies holes for unknown

APIs (EdSynth.INVOKE()) as a regular method invocation,

which can be used at any locations including conditions

and bodies of loops/if-branches. Therefore, EDSYNTH does

not require additional handling for conditionals and loops

where one test may reach multiple basic blocks to synthesize,

because the method invocation provided by EDSYNTH is

treated exactly the same as a regular method invocation during

the test execution. EDSYNTH only compiles the user-provided

sketch once and generates candidates on demand, i.e., if the

condition is evaluated to be false, the candidates for the body

of the loops or if-branches will not be generated.

Algorithm 1 illustrates the execution-driven synthesizing

procedure [16]. When the test execution reaches a hole at

the first time, EDSYNTH initializes this hole and contin-

ues executing the program based on the selected candidate.

If this candidate throws a runtime exception or fails in a

test assertion, EDSYNTH breaks from the current execution

(line 13) and executes the test again from the beginning. When

the program backtracks, EDSYNTH increments the counter

(line 7), thus when the test execution reaches a hole again,

EDSYNTH selects the next candidate for the hole based on

the counter, and executes the program with the new candidate.

This process stops when a generated candidate passes all tests

or the entire search space of candidates is explored.

Constructing API Sequence. Shown as Algorithm 2, when

the test execution first reaches the hole of unknown API

sequence (hole.isNotInitialized()), EDSYNTH lazily

generates the API sequence and invokes them in place

using the function sketchAPISequence(). The function

sketchAPISequence() dynamically generates candidates

for API sequences when the test execution first reaches the

“hole”. If this method invocation chain has been initialized,

this chain will be used consistently across all test cases (line 5).

Yet if this hole is not reached by the test execution, its

candidate initialization will not be triggered. In the function

Algorithm 1: Test-Execution-Driven Synthesis [16]

Input : Partial program P with holes, test suite T
Output: Complete Program P ′ that pass all test cases

1 Function sketch () is
2 do
3 try
4 exploreCurrentChoice();

5 catch BacktrackException
6 nextChoice() ;

7 while incrementCounter();

8 Function exploreCurrentChoice() is
9 try

10 foreach test ∈ T do
11 test.run() ;

12 catch TestFailureException
13 throw BacktrackException;

14 printSolution() ;
15 searchExit(); /* if only one result needed */

sketchAPISequence(), EDSYNTH first yields a set of con-

straints described in the next section of ranking strategies.

Based on these constraints (rule), EDSYNTH incrementally

inserts a given number of method calls into the sequence

(rule.stmt). The inserted method is invoked via reflection.

If it throws any runtime exception, EDSYNTH backtracks

immediately and re-executes the whole program from the very

beginning. Whenever the test execution reaches the hole again,

it selects the next candidate (line 15) based on the incremented

counter (Algorithm 1 line 7).

Single Method Generation. For each API in the unknown

API blocks, EDSYNTH generates a vector of method can-

didates based on the generated constraints (rule, line 10)

and the constraints from the Java syntax. Considering a large

amount of classes in the libraries, EDSYNTH only collects all

methods from the given libraries once and reuse them for the

entire synthesis process. Shown as the function sketchAPI(),

for each method invocation, EDSYNTH selects all type in the

search scope, fetches all methods of these types (line 20)

and filters out the infeasible methods based on the generated

constraints and Java syntax constraints. If there does not

exist a given argument or intermediate value with the type

of a parameter in the method m, this method will not be

considered because one of its parameters cannot be initial-

ized. The selected methods are put into a vector of method

candidates for this unknown API. EDSYNTH dynamically

selects a candidate method with a non-deterministic choose()

operator. To complete the selected method candidate (line 23),

EDSYNTH further non-deterministically selects receiver object

and parameters of this method from given arguments and

intermediate values. Finally, EDSYNTH returns this generated

method call, invokes it using reflection and incrementally

inserts more invocations into the API sequence.

Following the same spirit of other API synthesis tools [2],

[3], we only consider one method invocation for each
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Algorithm 2: API Candidate Generation

Input : Program hole hole, Maximum length of the API
sequence len, Input variables vars

Output: Invocation result result of generated API sequence
1 Function execute () is
2 if hole.isNotInitialized() then
3 return hole.sketchAPISequence();

4 else
5 return hole.getAPISequence().invoke(vars);

6 Function sketchAPISequence () is
7 rule ← getConstraints(len).choose();
8 sequence ← ∅, args ← vars;
9 for int i=0; i<rule.stmt; i++ do

10 call ← sketchAPI(rule, i);
11 try
12 result ← call.invoke(args);
13 args ← args ∪ result;

14 catch Exception e
15 reExeute();

16 sequence ← sequence ∪ call;

17 hole.setAPISequence(sequence);
18 return getReturnVal(rule, args);

19 Function sketchAPI(rule, i) is
// Generate single API sketch

20 methods ← fetchMethods(hole.getClasses(), rule, i);
21 method ← methods.choose();

// Complete expressions holes in methods
22 calls ← method.fillParameters(hole.getArgs(i), rule);
23 return calls.choose();

statement. E.g., EDSYNTH only considers a method call

iterator.next() for one statement, but will not consider

method chains like iterator.next().toString() when

it synthesizes a single method invocation. The method chain

will be represented as multiple API calls: Object obj =

iterator.next() and String str = obj.toString().

Similar to SYPET, EDSYNTH currently only supports variables

as receiver objects and parameters, without considering field

dereferences derived from these variables. E.g., field deref-

erences like node.val are not considered while node is an

element in a linked list and val is the integer value of this el-

ement. EDSKETCH supports field dereferences sketching [16]

and we leave field dereference for EDSYNTH as future work.

Advanced Java Feature Support Many Java libraries use

parametric polymorphism. Existing techniques require special

models based on static analysis to handle generic types [2],

[3]. Without additional modeling, EDSYNTH supports API

sequences with generic types by leveraging the runtime infor-

mation. We present an example of generic type in Figure 3.

EDSYNTH also supports reflections and native calls, which

can hardly be translated to SAT (refer to EDSKETCH [16]). If

users are not clear about the return type of the sequence, they

can set the return type as null, and EDSYNTH will consider

all types as well as the void type.

B. Prioritization Strategies.

Once the test execution triggers on-demand candidate ex-

ploration, EDSYNTH first generates a set of pre-defined con-

straints to rank the candidates (line 7). These constraints divide

the search space of the API candidates to multiple sub-spaces

with more constraints. EDSYNTH generates 4 elements to

prioritize the candidates: the number of API invocations in the

method sequence (rule.stmt), the statement that generates the

return object (rule.rtn), the maximum distance that interme-

diate values must be consumed (rule.vc), and the maximum

number of repetitive APIs in the method sequence (rule.rep).

We describe the effect of each constraint element as below.

The number of API calls. Intuitively, the search space of the

API sequence increases if EDSYNTH wants to synthesize more

methods for the “hole”. Therefore, we prioritize the candidates

with the fewer API invocations and increase the bound of API

calls until we reach the given bound from users or the pre-set

bound for the number of API calls. For each unknown API

hole, this bound is set as 4 by default and is configurable

by the end users. Yet EDSYNTH can synthesize multiple API

blocks while each of them contains a given bound of APIs.

For instance, the fifth task shown in Table I synthesizes an if-

condition with one API, a while-loop-condition with one API

invocation and 4 APIs (in total of 6 API calls) in the body

of loops/if-branches. It can be a while-loop nested with an if-

condition or vice versa, and the 4 APIs can be inside the loop

but not within the if-branch, inside the if-branch body nested

in the loop, or even outside the loop.

The statement that generates the return object. Method

invocations appearing later in the execution are more likely to

have more information because it can use parameters generated

before. Therefore, these methods tend to generate the return

value for the API sequence. We prioritize the statements that

are called later during the test execution and add a constraint

that the selected statement must generate a value with the

return type. Figure 1 illustrates this idea that the return value

res3 of the API sequence is the output of the last API call.

Maximum distance that values must be consumed. Similar

to other API synthesis tools [1], [3], EDSYNTH assumes that

all arguments and intermediate values generated from previous

method invocations must be consumed in later API calls. With

the insight that arguments and intermediate values should be

consumed as fast as possible, we set up a constraint that

all values must be used within a given bound of statements.

For instance, shown as Figure 1 (E), given a constraint that

all intermediate values must be consumed in the distance

of two statements, the code at line 5 that initializes a new

Vector2D object res3 must consume the intermediate value

res1 generated at line 3. To eliminate duplication, we ensure

that there exists at least one value used at the maximum value-

consumption distance. If the maximum value-consumption

distance is set as 2, at least one value is used at the second

next statement, otherwise all objects will be consumed at the

next statement, which has been explored with rule.vc = 1.

Maximum number of repetitive APIs. With the notion that
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developers hardly use the same API for multiple times in a

method sequence, we restrict the number of repetitive APIs in

a method sequence, and relax this bound by allowing multiple

repetitive APIs.

These prioritization strategies are based on the heuristics

for API synthesis, which may not always expedite the API

synthesis process or lead to the correct answer. Therefore,

we conduct a comprehensive evaluation for these strategies

in Section IV-C.

IV. EVALUATION

To evaluate EDSYNTH, we first demonstrate our ability to

synthesize multiple API blocks where one test may reach

multiple basic blocks to synthesize. In particular, we select 12

tasks with loops and conditionals derived from open source

projects. To further compare EDSYNTH’s performance with

existing techniques, we use a benchmark of 38 straight-line

tasks in loop-free programs that have been used to evaluate

SYPET, a state-of-the-art API synthesis approach, followed by

a discussion of extending existing API synthesis techniques for

loops and conditionals. Lastly, we investigate the effectiveness

of our prioritization strategies based on the same benchmark.

We address the following research questions in the evaluation:

• Can EDSYNTH complete multiple API blocks that may

be reached by a single test execution, especially for loops

and conditionals?

• How well does EDSYNTH perform on synthesizing

straight-line code compared to other techniques?

• Can our prioritization strategies effectively expedite the

synthesizing process?

All performance experiments are conducted on a MacBook

Pro with 2.7 GHz Inter core i5 processor and 8GB memory

running OS X version 10.12.4. The maximum heap memory

is set as 2 Gigabytes.

A. Synthesizing Multiple Sequences in Loops and Conditionals

To evaluate EDSYNTH’s ability to synthesize API blocks

that may be reached by the same test execution, especially

for the conditions and bodies of loops/if-branches, we select

12 tasks that use 1) at least one API in the condition, 2) at

least one method invocation in the body of loops/branches,

3) at least one test case in the test suite should covered

both the conditions and the bodies of the loops/branches

and 4) every hole of the partial program is covered by at

least one test case. We use the original test suites from

the open source projects as the correctness criteria, which

are usually written in JUnit test framework. These tasks

are selected from three open source Java projects that have

been widely used in the evaluation of software testing [21],

[22]: JFreeChart [23], Apache-Math [17], and Closure

compiler [24] for Javascript. We manually create program

sketches and introduce holes for API sequences based on the

original implementation.

Case Study. Figure 3 presents an example from Closure

project [24] with generic types and an if-else branch. Using the

(A) A program sketch with generic types and unknown APIs

1. public void visit (...) {...
2. T type = ...;
3. if ((Boolean) EdSynth.INVOKE(0)

.addArgument(Object.class, type)...) {
4. EdSynth.INVOKE(1)

.addArgument(Object.class, type)

.setReturnType(null)...;
5. } else {
6. EdSynth.INVOKE(2)

.addArgument(Object.class, type)

.setReturnType(null)...;
7. }

(B) A sample test case of Closure project with special format

1. public void testTypedExterns() {
2. testSets(false, externs, js, output,

"{alert=[[Foo.prototype]]}");
3. }

(C) A solution found by EDSYNTH that satisfies all test cases

1. EdSynth.INVOKE(0):
2. typeSystem.isInvalidatingType(type)
3. EdSynth.INVOKE(1):
4. prop.invalidate();
5. EdSynth.INVOKE(2):
6. prop.addTypeToSkip(type);

Fig. 3. A synthesis task from open source projects that uses generic types

visit() method, developers try to set properties as ineligible,

but they are not sure about the implementation details of

the branch and they also don’t know the return type of the

branch, but they are able to provide some high-level insights

of the if-else skeleton and ask EDSYNTH to complete the

condition of the if-branch, the if-body as well as the else-

body. Note that the visible variable type is in generic type.

Without additional modeling, EDSYNTH simply requires users

to define the argument type as Object.class. The type of the

argument is necessary because if a variable is null, EDSYNTH

is not able to identify its type using reflection at runtime. Users

further set the return type as null since they are not sure

about the return type, which might be void. In particular, the

test cases of the Closure project are known to be organized

in a non-conventional way of using scripts rather than the

standard JUnit framework. Figure 3 (B) presents a test case

from Closure project that covers one branch of this if-else

statement, written in this special test format. Our practical

test-execution-driven synthesis approach does not have special

requirements on the test format and can be applied to large-

scale projects in the presence of libraries.

Evaluation Results. Table I lists these 12 subjects, including

basic information of the open source projects (lines of code

Loc and the number of test cases #Tests), a brief summary

of each synthesis task (Column Description) and the number

of test cases that reaches the “holes” (Column #Test). Column

#Cond represents the number of APIs in conditions of loops/if-

branches. The 2if indicates that EDSYNTH synthesizes a total

of 2 method invocations in the if-condition expressions. It
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TABLE I
SUBJECTS WITH MULTIPLE API SEQUENCES IN LOOPS AND CONDITIONALS

Project ID Description #Cond #Stmt Space #Tests #Run Time(s)

Chart 1 createAndAddEntity(): Created an entity for the axis 3if 3 5.7×1013 1 497 18
Loc: 90k; 2 addBaseTimelineException(): Add a segment 1wh 1 2.4k 2 2 12

#Tests:2.2k 3 addBaseTimelineException(): Add a segment 1if 3 180.3m 1 23 13

Math 4 ebeDivide(): Element-by-element division in a vector 1wh 4 9.4b 1 7.6k 16
Loc: 95k 5 add(): Optimized method to add two RealVectors 1if, 1wh 4 565.2b 1 10 1

#Tests: 3.6k 6 setEntry(): Set entry in specified row and column 3if 2 9.3×1014 1 529 33
7 append(): append a vector to an existing one 1wh 3 208.8m 1 53 1

8 visit(): sets properties as ineligible 1if 2 9k 57 1 3
Closure 9 applyCollapses(): Collapse variable declarations 1if, 1wh 2 12.5b 6 125.0k 220

Loc: 90k 10 remove(): Remove this node 1if 3 1.4×1011 10 172.4k 333
#Tests: 7.8k 11 flattenReferences(): Flattens to collapsible properties 2if 2 7.0m 23 9 6

12 removeVar(): remove var if it has been coalesced 3if 3 1.8×1014 28 195.1k 2.3k

*if represents the total number of synthesized APIs in if-conditions, and *wh represents the total number of generated methods in while loops.

can be an API chain of two methods in an if-condition, an

if-condition and an else-if-condition, or nested if-conditions.

Similarly, we use 1wh to represent a while-condition with one

API call. The column #Stmt represents the total number of

synthesized APIs in the body of the conditions/loops, and these

APIs may scatter in different branches. Column Space shows

the search space of API sequence candidates with respect to

the identified solution. Column #Tests represents the numbers

of provided test cases for the synthesis. Column #Run shows

the number of executed program candidates when EDSYNTH

finds the first solution that passes all test cases. Column Time
represents the total performance time including the program

compilation time and the test execution time when EDSYNTH

finds the first solution.

Following other API synthesis techniques, we define the

search space of program candidates as
∑N

1 (m× vap)i where

N is the number of synthesized APIs in the correct solution,

m is the total number of methods collected from the input

objects, ap represents the average number of parameters for

these m methods, and v is the number of given input variables.

We define the search space as is because each argument in a

method candidate can have a maximum of v options and we

incrementally insert more APIs into the sequence searching

for a desired solution. Note that it is just an estimated search

space because API candidates are dynamically generated based

on the previous APIs and constraints, and not all candidates

in the search space will be generated based on the on-demand

candidate generation.

On average, EDSYNTH explores 41.7k program candidates

when it finds the API sequences that satisfy all test assertions.

Our on-demand candidate generation approach can substan-

tially prune a significant portion of candidates. In our ex-

periment, EDSYNTH completes partial programs by executing

only a very small amount of candidates (less than 0.001%).

Regarding the performance time, 75% of synthesis tasks can

be done in 1 minute. We also observe that EDSYNTH does

not require many test cases to synthesize an API sequence. In

particular, some tasks with multiple holes in both the while-

condition and the while-body can be synthesized using a single

JUnit test case, such as the subject No.4 shown in Figure 2. We

manually validate each synthesized program to ensure that it

is semantically identical to the original implementation. To the

best of our knowledge, none of these 12 tasks can be address

by the state-of-the-art API synthesizers.

B. Synthesizing Straight-Line API sequences

To further compare EDSYNTH’s synthesizing efficacy with

other API synthesizers, we curate a benchmark of 38 synthesis

tasks for straight-line APIs in loop-free program. 30 of them

are used in the original evaluation of SYPET [3]. The 30

synthesis tasks used in SYPET evaluation are collected from 4

open source projects based on StackOverflow online forum and

Github repositories, and the corresponding test cases are man-

ually created in an incremental manner until SYPET can find

a correct solution with respect to the original implementation.

To eliminate the overfitting issue of using SYPET’s dataset,

we add another 8 tasks derived from the same open source

projects. We select SYPET as it is known as the state-of-the-

art API synthesizer using advanced graph reachability analysis,

which compares favorably with other synthesis tools [2],

[18]. As we cannot replicate the experiments with the same

machine used in SYPET’s evaluation, we execute it under our

experiment setting (with smaller memory compared to their

machine) and report the comparison result. We set up a time

limit as 30 minutes for our experiments, the same as the default

setting of SYPET.

Evaluation Results. Table II reports the 38 subjects with brief

descriptions. With ranking strategies, EDSYNTH successfully

synthesizes 30 subjects with an average of 67 seconds. We

manually investigate the tasks that EDSYNTH could not gener-

ate a solution within the time limit and find that these outliers

usually have a relatively large distance for the intermediate

value consumption, thus EDSYNTH de-prioritizes these candi-

dates. For instance, shown as Figure 4 (A), the input argument

arg1 is not consumed until the 6th statements, indicating

that the maximum distance of the value consumption is 6.

Therefore, EDSYNTH fails to prioritize the correct solution.
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TABLE II
STRAIGHT-LINE SUBJECTS

ID Description #Tests
SYPET EDSYNTH

#API Time(s) #API Space
With Ranking Without Ranking

Time(s) #Run Time(s) #Run

1 Compute the pseudo-inverse of a matrix 1 3 41 3 1.7b 6 1.8k 12 5.3k
2 Compute the inner product between two vectors 1 3 24 2 258.6m 2 124 3 134
3 Determine the roots of a polynomial equation 1 3 35 3 23.1t 109 9.0k 380 69.3k
4 Compute the singular value decomposition of a matrix 1 3 24 3 45.5b 3 286 8 993
5 Invert a square matrix 1 3 28 2 12.7m 2 135 3 217
6 Solve a system of linear equations 1 6 115 - 1022 - 146.7k - 959.7k
7 Compute the outer product between two vectors 1 4 37 2 258.6m 2 117 3 127
8 Predict a value from a sample by linear regression 2 3 244 3 18.1b 517 3.7k 4 3.8k
9 Compute the ith eigenvalue of a matrix 2 - ⊥ 4 1015 62 211.2k 339 850.3k

10 Scale a rectangle by a given ratio 1 4 36 3 502.0b 314 32.0m 710 18.3m
11 Shear a rectangle and get its bounds 1 4 36 3 502.0b 308 31.9m 133 13.1m
12 Rotate a rectangle about the origin by quadrants 1 4 17 3 32.2b 2 907 3 2.6k
13 Rotate 2-D shape by the specified angle about a point 2 4 33 - 1015 - 19.7m - 18.2m
14 Perform a translation on a rectangle 1 4 26 3 502.0b 308 32.2m - 55.0m
15 Intersect a rectangle and an ellipse 1 3 11 2 10.1m 2 40 1 3
16 Compute number of days since a date 2 3 22 3 45.8b 37 80.8k 70 111.6k
17 Subtract two dates considering timezone 3 4 408 3 2.3t 56 150.4k 122 214.2k
18 Determine if a year is a leap year 3 4 68 3 45.8b 24 102.3k 3 1.2k
19 Return the day of a date string 2 3 11 3 2.5t 42 252.9k 43 57.7k
20 Find the number of days of a month in a date string 2 4 83 - 1016 - 38.1m - 5.6m
21 Find the day of the week of a date string 2 4 44 - 1016 - 19.4m - 5.4m
22 Compute age given date of birth 2 3 30 3 45.8b 63 158.6k 86 174.1k
23 Compute the offset for a specified line in a document 1 3 19 3 1.7t 5 1.2k 11 4.0k
24 Get a paragraph element given its offset in a document 1 3 24 3 1.7t 4 1k 11 3.8k
25 Obtain the title of a webpage specified by a URL 1 3 110 3 1.1b 35 10.7k 35 19.2k
26 Return doctype of XML document generated by string 1 6 21 - 1019 - 5.4m - 5.6m
27 Generate an XML element from a string 1 6 24 - 1019 - 3.8m - 4.8m
28 Read XML document from a file 1 3 14 3 5.5b 4 3.9k 5 2.8k
29 Generate an XML from file and query it using XPath 1 6 78 - 1026 - 3.2m - 3.3m
30 Get the value of root attribute from a XML file 1 5 17 - 1018 - 13.0m - 13.8m

31 Check if a point is inside a rectangle 8 5 66 1 3.1k 0.5 1 0.4 1
32 Check if a line segment intersects a rectangle. 8 - ⊥ 2 63.1m 1 224 2 265
33 Compute number of minutes between two time 8 - ⊥ 2 175.5m 1 183 1 350
34 Get number of seconds since the midnight of sometime 8 2 15 1 3.5k 1 2 0.7 2
35 Compute the transpose of a matrix 8 3 12 3 1.7b 1 88 1 401
36 Compute the sum of two matrices 8 4 14 4 911.1t 99 3.8k 1.4k 56.5k
37 Compute exclusive or between an area and a rectangle 2 - - 2 10.1m 3 135 3 136
38 Create an element with given name 3 4 18 4 3.3t 5 6.5k 1 779

⊥ represents out of memory. - represents time out after 30 minutes. The first 30 subjects are from the evaluation benchmark of SYPET, 31-38 are 8 subjects
derived from the open source projects used in SYPET evaluation, and the rest are small synthesis tasks such as absolute value calculation.

SYPET finds desired API sequences for 34 subjects with

an average of 53 seconds. Figure 4 (B) presents a subject that

SYPET fails to identify a correct solution within the time limit

whereas EDSYNTH detects the solution in 3 seconds. We are

not aware of the root cause of this failure as the source code

of SYPET is not publicly available, yet we conjecture that

the translation to SAT and the advanced graph reachability

analysis may cause some impractical issues for open-source

projects. In addition, SYPET throws out of memory exception

in 3 synthesis tasks, indicating that construction of the large

reachability graph using SAT solver can consume a large

amount of memory. The memory EDSYNTH uses for API

synthesis is linear with respect to the number of method

invocations under synthesizing. Regarding the performance

of the API synthesis, out of 26 subjects that both tools can

generate desired code, EDSYNTH outperforms SYPET in 17

subjects.

Discussion It is possible in principle to enhance existing API

synthesis approaches with test partition to handle a broader

class of synthesis problems which are handled by EDSYNTH.

To illustrate, consider using SYPET to synthesize parts of an

“if-else” statement. Intuitively, the synthesis problem can

be divided into three subproblems of synthesizing the if-

condition, the if-body, and the else-body. Given that a test

case can only exclusively execute either the if-block or the

else-block, we partition the given test suite and synthesize

these two blocks and the if-condition based on two subsets

of test cases. Yet this partition requires an enumeration of all

combinations for the given test cases, in order to search for an

adequate test partition such that SYPET could generate API

sequences for both the if-body and the else-body based on

these two subsets of tests. If the test partition can successfully

generate two method sequences for the if-body and the else-

body, we further collect test oracles for the if-condition with
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(A) A subject that EDSYNTH times out (No.6)

1.public static double[] solveLinear
(double[][] arg0, double[] arg1) {

2. RealMatrix v1 = MatrixUtils.createMatrix(arg0);
3. RealMatrix v2 = v1.transpose();
4. LUDecomposition v3 = new LUDecomposition(v2);
5. DecompositionSolver v4 = v3.getSolver();
6. RealMatrix v5 = v4.getInverse();
7. double[] v6 = v5.preMultiply(arg1);
8. return v6; }

(B) A subject that SYPET times out (No.37)

1.public void exclusiveOr(Area area,
Rectangle2D rect){

2. Area res0 = new Area(rect);
3. area.exclusiveOr(res0); }

(C) A subject that ranking strategies fail to expedite the search (No.11)

1.public Rectangle2D shear(Rectangle2D arg0,
double arg1, double arg2){

2. AffineTransform res0 = AffineTransform
.getShearInstance(arg1, arg2);

3. Shape res1 = res0.createTransformedShape(arg0);
4. Rectangle2D res2 = res1.getBounds2D();
5. return res2; }

Fig. 4. Ourlier examples in the evaluation

respect to the tests, and let SYPET synthesize an API sequence

for the if-condition that generates this test partition. Based

on this idea of dividing multiple API sequences synthesis

tasks to multiple straight-line synthesis problems, we build

an extension of SYPET to synthesize chained if-conditions.

To illustrate this extension based on the test partitioning,

consider the method classify() in Figure 5 that tries to

classify the triangle based on its three edges. The method takes

the lengths of three edges as input and returns the triangle’s

classification as either acute, right angled, or obtuse. Figure 5

(A) presents a method skeleton with chained if-conditions. We

manually provide more than 10 test cases to ensure 100%

branch coverage for this synthesis task: three bodies of the

branches and two if-conditions. Figure 5 (C) shows a solution

from the extension of SYPET based on the test partition.

Using this extension of the existing straight-line API synthe-

sis technique [25], we observe that it can be very expensive to

find an adequate test partition that satisfies constraints for both

conditions and bodies of the branch. Given 10 test cases, the

possible partitions can be as large as 310. The test-partition-

based extension for multiple API blocks assumes that the

synthesized APIs for the conditions cannot change the current

program state, otherwise it may fail due to the side effect

of the if-condition. EDSYNTH does not suffer from these

limitations as it effectively leverages runtime information of

the test execution to synthesize the desired method invocations.

Moreover, the test-partition-based synthesis for multiple API

blocks can fail in synthesizing while-loops and more complex

control flows such as nested if-branches whereas EDSYNTH

treats the unknown API blocks as a regular Java method

(A) A code skeleton with branches as the input of extended SYPET

1.String classify(int a, int b, int c) {
2. if(condition1(a, b, c)) {
3. return body1();
4. } else if(condition2(a, b, c)) {
5. return body2();
6. } else {
7. return body3();
8. } }

(B) Sample test cases that define correct behaviors

public static boolean test1() throws Throwable {
return classify(78, 79, 80).equals("acute");

}
public static boolean test2() throws Throwable {
return classify(12, 13, 5).equals("right");

}
public static boolean test3() throws Throwable {
return classify(10, 15, 10).equals("obtuse");

}

(C) A solution from extended SYPET

1. body3(a,b,c): Library.obtuse(a,b,c);
2. body2(a,b,c): Library.right(a,b,c);
3. body1(a,b,c): Library.acute(a,b,c);
4. condition2(a,b,c): Library.isRight(a,b,c);
5. condition1(a,b,c): Library.isAcute(a,b,c);

Fig. 5. An example of extended SYPET that synthesizes multiple APIs in
conditionals

invocation that can be used in nested loops and if-branches.

C. Efficacy of Prioritization Strategies

To evaluate if our prioritization strategies expedites the

search of the desired APIs, we report the performance time

(Time) and the number of executed programs (#Run) when

EDSYNTH finds the first solution that satisfies all test cases.

The last 4 columns of Table II lists these results with and

without prioritization strategies.

Given a 30-minute time limit, EDSYNTH successfully com-

pletes 30 synthesis tasks with prioritization strategies, whereas

only 29 can be completed without the ranking strategies and

23 of these tasks take longer to complete the task without the

ranking strategies. We manually inspect the subjects where the

ranking strategies perform poorly and highlight one example

in Figure 4 (C). In this example, the first argument (arg0) is

used in the second statement while the other two arguments

are used in the first statement, which leads to some additional

exploration with our ranking strategies. We further use the

Spearman test to measure if the performance time and the

number of executed candidates are significantly different with

and without prioritization strategies. And the result of p < 0.01
indicates that our prioritization strategies significantly reduce

the performance time and the number of explored candidates.

Threats to Validity. We use test cases as the correctness

criteria, which can generate plausible solutions that pass all

test cases but are not equivalent to some hypothetical correct

ones. We manually inspect the first generated solution for each

subject to validate its correctness.
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We focus on a new problem of synthesizing multiple API

sequences, and we curate a benchmark of tasks with multiple

unknown API sequences in both the conditions and the bodies

of loops/if-branches to evaluate our approach, yet these tasks

may not be real challenges from developers’ perspective. We

conduct a preliminary study to investigate the usage of APIs

in loops and conditionals, and our relatively small dataset used

in the study may not extend to larger datasets. We leave the

user study as future work and refer to existing studies [1], [2].

We only compare EDSYNTH with a state-of-the-art API

synthesizer; thus our comparison result might not extend to

other such tools, e.g., CODEHINT [2] and INSYNTH [18]. We

note that SYPET has shown to compare favorably with both

CODEHINT and INSYNTH using its evaluation subjects, which

are also used in our evaluation.

V. RELATED WORK

EDSYNTH is related to a number of works on API synthesis,

code completion and program synthesis.

API synthesis. PROSPECTOR [1] is one of the first works that

introduces the notion of synthesizing “jungloid code snippets”.

A jungloid is a composition of single-argument methods with a

single return type. PROSPECTOR synthesizes method sequence

based on the jungloids mined from existing code corpus.

Similar to PROSPECTOR, CODEHINT [2] leverages empirical

statistic models to prioritize runtime recommendation for the

API completion. It allows users to set up breakpoints in

Eclipse IDE and rollbacks to the previous state whenever

the selected candidate encounters a runtime exception or test

failure. In contrast to the tools with expensive state restoration,

EDSYNTH simply backtracks till the beginning of the program

and re-executes the next candidate. SYPET [3] further extends

PROSPECTOR by introducing Petri-net for reachability analysis

based on SAT solvers. We believe their reachability analysis is

complementary to ours, yet in this paper, we show that using

a relatively simple test-execution-driven approach for API

synthesis, EDSYNTH compares generally well with SYPET

and further supports multiple API sequences where one test

may reach multiple basic blocks to synthesis, especially for

the loops and conditionals where both conditions and bodies

of loops/if-branches use APIs.

Code Completion. A series of other tools [4], [5], [26], [27]

mine API usage pattern from the code repositories and use

empirical probabilistic models to guide the search towards the

methods that are more often used in practice. In particular,

SLANG [28] predicts probabilities of API calls using statistical

models based on machine learning, while STRATHCONA [8]

assists developers in finding relevant API invocations with

similar program contexts. Different from these techniques

that train offline data corpus for method invocation comple-

tion, EDSYNTH leverages runtime information to substantially

prune a large portion of candidates. We envision that empirical

statistical models can be helpful to prioritize the sequences.

Program Synthesis. Program synthesis has achieved many

success on synthesizing code in small well-defined domains

such as bit-vector logic [11] and data structures [29], [30]

based on test cases [9] or specifications [10], [12]. These tools

transform partial programs [15], input-output examples [31],

[32] or oracles [11], [33] to decision procedures and SMT

solvers, which have shown as very efficient in certain domains

that have been fully modeled [18], [34]. Other synthesis tools

try to generate small code snippets. Perelman et al. [35] infer

partial expressions using type-directed completion and IN-

SYNTH [18] handles high-order functions and polymorphism

using theorem proving. Yet both of them are confined to

generating a single statement rather than the method sequence.

Recent works leverages natural language queries [6], [7], [36]

to infer expressions and simple method invocations, whereas

EDSYNTH could synthesize code in a much large scope:

multiple method invocations in loops and conditionals.

Our idea of exploiting the programmers’ expertise to pro-

vide high-level insight of program skeletons share the same

spirit with the sketching-based synthesis [37]. The SKETCH

system [15] asks programmers to write a program sketch with

“holes”, and uses counter-example-guided inductive synthesis

to complete the holes. JSKETCH brings the sketch-based

synthesis to Java [38]. Given a partial Java program written

in the sketch syntax, JSKETCH translates the Java program

to SAT-based sketch synthesizer and transfers the synthesizer

result back to executable Java code. Yet JSKETCH supports

a limited number of libraries due to the difficulty of trans-

forming libraries to SAT. Sullivan’s doctoral dissertation [39]

introduces a test-driven approach for sketching declarative

models in Alloy [40]. Our synthesis approach based on the

test execution is also similar to other test-driven synthesis

techniques [9], [34], [41], yet we focus on a more complex

scenario of synthesizing Java method invocations with loops

and conditionals in open source projects.

VI. CONCLUSION

We introduced EDSYNTH, an approach that synthesizes

method invocation sequences in programs with loops and

conditionals, where the fragments may be scattered across

multiple basic blocks. EDSYNTH utilizes runtime information

to substantially prune a large number of candidate fragments

using on-demand candidate generation. To further expedite the

search, EDSYNTH leverages a set of ranking strategies that

apply in synergy with on-demand candidate generation.

We evaluated EDSYNTH using a suite of API synthesis

tasks with loops and conditionals, and compared it with

a state-of-the-art tool for straight-line API sequences. The

experimental results showed the effectiveness of EDSYNTH

at handling synthesis tasks with loops and conditionals where

one test may reach multiple basic blocks to synthesize. We

believe execution-driven synthesis with on-demand candidate

generation holds a key to a practical and scalable approach for

synthesis in a variety of domains.
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