
Towards Practical Program Repair with On-Demand Candidate
Generation

Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid
The University of Texas at Austin, USA

{lisahua,mengshi.zhang,kaiyuanw,khurshid}@utexas.edu

ABSTRACT

Effective program repair techniques, which modify faulty programs
to fix themwith respect to given test suites, can substantially reduce
the cost of manual debugging. A common repair approach is to
iteratively first generate candidate programs with possible bug fixes
and then validate them against the given tests until a candidate that
passes all the tests is found. While this approach is conceptually
simple, due to the potentially high number of candidates that need
to first be generated and then be compiled and tested, existing
repair techniques that embody this approach have relatively low
effectiveness, especially for faults at a fine granularity.

To tackle this limitation, we introduce a novel repair technique,
SketchFix, which generates candidate fixes on demand (as needed)
during the test execution. Instead of iteratively re-compiling and
re-executing each actual candidate program, SketchFix translates
faulty programs to sketches, i.e., partial programs with “holes”, and
compiles each sketch once which may represent thousands of con-
crete candidates. With the insight that the space of candidates can
be reduced substantially by utilizing the runtime behaviors of the
tests, SketchFix lazily initializes the candidates of the sketches
while validating them against the test execution.

We experimentally evaluate SketchFix on the Defects4J bench-
mark and the experimental results show that SketchFix works
particularly well in repairing bugs with expression manipulation
at the AST node-level granularity compared to other program re-
pair techniques. Specifically, SketchFix correctly fixes 19 out of
357 defects in 23 minutes on average using the default setting. In ad-
dition, SketchFix finds the first repair with 1.6% of re-compilations
(#compiled sketches/#candidates) and 3.0% of re-executions out of
all repair candidates.

ACM Reference Format:

Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid. 2018.
Towards Practical Program Repair with On-Demand Candidate Generation.
In ICSE ’18: ICSE ’18: 40th International Conference on Software Engineering
, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3180155.3180245

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180245

1 INTRODUCTION

Manually debugging faulty code is often tedious and costly, and
itself error-prone. The last decade has seen much progress in the
area of program repair, which has shown much promise for au-
tomating debugging to reduce its cost and increase its effective-
ness [2, 11, 19, 23, 29, 32, 45, 46, 54]. A common approach for auto-
mated program repair is generate-and-validate [22, 25, 30, 55, 56, 58],
where several candidate programs that represent potential bug
fixes are iteratively generated using repair templates, and validated
against the given tests until a candidate that passes all tests is
found. While techniques that embody this approach have shown
their effectiveness on repairing a number of defects using various
search algorithms [21, 43, 55, 56], a limiting characteristic of these
techniques, especially for repairing faults at a fine granularity, is
that they require potentially many candidates to first be generated
and then be compiled and tested. The costs of compilation and test
execution are non-trivial [26, 31, 55], especially for open source
projects like the Closure compiler [4], which takes around 1 minute
for the compilation and the test execution. Given a typical search
space of repair candidates (around 5k), the total re-compilation and
re-execution time can be as long as 3 days.

To allow the exploration of large numbers of candidates, re-
searchers have developed various techniques in previous work. For
example, some techniques [7, 24, 36, 37, 40] infer constraints and
synthesize repairs by translating the constraints to propositional
satisfiability (SAT) formulas. Such translation-based synthesis may
involve incomplete translations or create impractical problems that
require creating complex models for all involved libraries. More-
over, they generally exclusively reason about boolean or integer
type [24, 37] and can hardly handle manipulation of non-primitive-
type expressions in presence of libraries or complex constructs
like AST node-level type casting. Some techniques mine historical
data [25, 28, 30] or analyze documents [27, 58] to rank the repair
candidates. These techniques have shown their effectiveness on
some classes of defects like exception handling, yet they may not
be effective at repairs that require fine-grained expression manipu-
lations at the AST node-level.

We present SketchFix, which is a novel technique for more
effective generate-and-validate program repair using a perspective
different from previous work. Our key insight is that the space of
candidate programs can be pruned substantially by utilizing run-
time information and by generating candidates on-demand during
test validation. To illustrate, consider trying to fix a faulty condition
in a while-loop as well as the body of the loop; if a test execution
raises an exception upon evaluating a specific candidate while-loop
condition, all candidates of the while-loop body are pruned from
search for that choice of the candidate condition expression. In
fact, our approach for lazy candidate generation will not create any

https://doi.org/10.1145/3180155.3180245
https://doi.org/10.1145/3180155.3180245

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

candidates for the while-loop body (which may contain thousands
of patches) if the while-loop body is not executed. When a test
fails due to either a runtime exception or a test assertion failure,
the parts of the candidate program that were directly executed
determine the generation of the future candidates. Instead of the
traditional approach of iteratively generating and validating each
repair candidate, we tightly integrate the generation and validation
of candidates by effectively utilizing runtime behaviors of the test
executions to prune a large part of the search space, which must be
explored otherwise.

At the AST node-level, SketchFix performs a systematic re-
duction of program repair to program synthesis [10, 18, 41, 51] by
translating a faulty Java program to sketches [16, 50], which will be
completed by a synthesizer [13] with respect to the given test suite.
Given a faulty Java program and a test suite as input, SketchFix
introduces holes to suspicious statements based on the AST node-
level transformation schemas. To fill in these holes, SketchFix
employs a practical sketch engine called EdSketch [13] to syn-
thesize sketches with backtracking search. Whenever EdSketch
encounters runtime exceptions or test failures, it backtracks imme-
diately and fetches for the next choice until the space of candidates
is exhausted or a complete program that satisfies all tests is found.
This complete program is regarded as a repair for the original faulty
program.

SketchFix defines transformation schemas at a fine granularity
and prioritizes first the schemas that introduce smaller perturba-
tions to the original program. Recent techniques present the insight
that patches that are semantically closer to the original programs
are more likely to be correct from the perspective of the develop-
ers [5, 24]. Our ranking strategy is in line with this insight and aims
to mitigate the overfitting issue [49] in automated program repair.

We evaluate SketchFix using Defects4J [20]—a dataset that
has been widely used to evaluate automated program repair tech-
niques. With default setting, SketchFix correctly fixes 19 out of
357 bugs in 23 minutes on average. It additionally fixes 15 faults
with alternative settings, such as applying more transformation
schemas, etc. Furthermore, we compare SketchFix with other re-
pair techniques and illustrate favored defect classes for different
automated program repair approaches. With on-demand candidate
generation, SketchFix requires only 1.6% of re-compilations (#com-
piled sketches/ #candidates) and 3% of re-executions out of all repair
candidates when it finds the first repair. Lastly, we demonstrate
that our find-grained transformation schemas are able to generate
high-quality patches by introducing AST node-level edits to the
original programs.

In summary, we make the following contributions:

• On-DemandCandidateGeneration for ProgramRepair.Uti-
lizing runtime behaviors, we lazily generate on-demand candi-
dates during the test execution for more practical program repair.
This integration of the generation and the validation phases sub-
stantially prunes the search space of the repair candidates.
• AST node-level ProgramRepairWe design a set of AST node-
level transformation schemas to repair faulty programs at a fine
granularity. This strategy is effective for generating high-quality
patches that are semantically closer to the original programs.

• Practical Reduction of Program Repair to Synthesis.With-
out inferring constraints or creation of constraint solving prob-
lems for SAT/SMT solvers, we transform the faulty subjects to
sketches and synthesize code to complete the sketches using a
backtracking search-based sketch system. Our evaluation shows
that this reduction from program repair to program synthesis
helps build effective and well-founded repair techniques.

2 MOTIVATING EXAMPLE

(A) Part of the human-written patch to fix the Chart14 defect

1.public class CategoryPlot extends Plot...{...
2. public boolean removeDomainMarker (...,boolean notify) {
3. ArrayList markers;
4. if (...) {...} else {
5.+ if (markers == null)
6.+ return false;
7. ...} }

(B) A sketch generated by SketchFix and synthesized solutions

1.public class CategoryPlot extends Plot...{...
2. public boolean removeDomainMarker (...,boolean notify) {
3. ArrayList markers;
4. if (...) {...} else {
5. if(SketchFix.COND(ArrayList.class,new Object[]{markers,..}))
6. return (Boolean) SketchFix.EXP(Boolean.class,

new Object[]{markers,..};
7. ...} }

// Synthesized solution:
// SketchFix.COND: markers==null,...
// SketchFix.EXP: false,...

Figure 1: An Illustrative Example for a Fault and the Repair

Generated by SketchFix

To illustrate the large search space of repair candidates, we
present a part of a defect derived from the JFreeChart project [17].
Figure 1 (A) presents a human-written patch to fix this part of the
bug that omits the null pointer checking for an ArrayList object
(markers). The class CategoryPlot contains 49 fields and 5 local
variables (54 candidates in total). Given a suspicious location, if an
automated repair tool wants to insert an if-condition and a return
statement to fix the bug, without considering field dereferences
derived from the variables and visible fields inherited from parent
classes, the space of candidates for the if-condition alone can be
more than 5k. We define conditions as left and right hand side ex-
pressions combined with a relational operator (either “==” or “!=”)
for non-primitive types, thus the space is 542 × 2. The return ex-
pression has another 15 candidates with the boolean type including
the default boolean values (true and false). Given an average com-
pilation and test-execution time of 15 seconds for the JFreeChart
project, it takes more than 15 days to validate all 87k candidates.

To effectively explore this large search space of repair candidates,
SketchFix translates the faulty program to sketches with holes and
synthesizes sketches with on-demand candidate generation. Given

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

a suspicious location, SketchFix applies AST node-level transfor-
mation schemas to generate a set of sketches, and each sketch
can represent thousands of concrete repair candidates. Figure 1
(B) illustrates a sketch generated by SketchFix. To generate this
sketch, SketchFix applies two schemas at the suspicious location,
one schema introduces an if-condition (if-condition schema) and
another introduces a return statement (return-statement schema).
To represent an unknown condition hole, i.e, if (??), SketchFix
defines an API SketchFix.COND(...) in Java syntax, which returns a
non-deterministic boolean value (either true or false) during the
test execution. This API takes two parameters: the hole’s target
type (i.e, ArrayList), and an array of visible variables as candidates
to fill in the hole. The hole’s target type is defined as the type of the
variables used to fill in the hole. SketchFix enumerates all types
derived from visible variables and generates one sketch for each
target type. At line 6, the return-statement schema inserts a return
statement with a non-deterministic expression SketchFix.EXP(...),
i.e, return ??, whose target type is the return type of the method.

The sketch shown in Figure 1 (B) will be compiled only once, yet
it represents 87k candidate patches. SketchFix directly executes
the given test suite after the compilation. When the test execution
first reaches the hole SketchFix.COND(...), instead of considering
thousands of concrete candidates like “markers!=null”, SketchFix
only considers two boolean values and non-deterministically se-
lects either true or false to fill in the condition hole. If SketchFix
selects false for the if condition, it will not initialize any candi-
dates for the return expression because the test execution does not
reach the hole SketchFix.EXP(...) inside the if block. In this example,
choosing the value false for the if condition leads to a test failure at
runtime. SketchFix backtracks immediately and selects the next
choice which is the value true for the if-condition. SketchFix gen-
erates candidates for the expression SketchFix.EXP(...) when the
test execution reaches the hole at the first time. Given 15 candidates
of the expression hole, SketchFix selects one candidate at a time
during the test execution until a candidate that satisfies all tests
is found. In this example, SketchFix finds the first solution in 40
seconds after compiling the sketch once and executing the tests
twice.

3 APPROACH

In this section, we describe how we translate faulty programs to
sketches usingAST node-level transformation schemas (Section 3.1).
These sketches are further synthesized by a practical sketch engine
with on-demand candidate generation (Section 3.2).

3.1 AST Node-Level Transformation

We perform a systematic reduction of program repair to program
synthesis by translating faulty programs to sketches at a fine gran-
ularity.
Syntax of Partial Expressions (Holes). Figure 2 denotes the
syntax of holes. We define two basic types of non-deterministic
holes for sketches: expression holes and operator holes. The atomic
expression holes (SketchFix.EXP()) represent visible variables, con-
stant values and field dereferences. As to the operator holes, we
define arithmetic operators {+,−,×, /,%} (SketchFix.AOP()), rela-
tional operators {==, ! =, >, <,⩽,⩾} (Sketch Fix.ROP()) and logical

atomic expr e := var | const | var . f
constant const := null | true | f alse | k
arithmetic op aop := + | − | × | / |%
relational op rop := == | ! = | > | < | ⩽ | ⩾
logical op lop := && | | |
composite expr e := e1 op e2 or array[eint]

Figure 2: Syntax of Partial Expressions

Mexp = p[ℓ] ⊢ et
et 7→ ωt

Mop = p[ℓ] ⊢ op
op 7→ δ

Mpar = p[ℓ] ⊢ f (par), f (par) ⊢ f ′(par ∪ et)
f (par) 7→ f ′(par ∪ ωt)

Mcon = p[ℓ] ⊢ if (c)
c 7→ c lop (ωt rop ω′t)

Mi f = p (ℓ) ⊢ (v,t)
p (ℓ) 7→ if (ωt rop ω′t) p (ℓ)

Mr tn = p (ℓ) ⊢ (v,t)
p (ℓ) 7→ return ωt p (ℓ)

Figure 3: Program Transformation Schemas

operators {| |,&&} (SketchFix.BOP()) that combine multiple clauses.
SketchFix generates composite expressions by combining expres-
sion holes with operator holes or combining array variables with the
index of array elements. Composite holes can further combine to-
gether. For instance, we define a hole for conditions (SketchFix.COND
()) as two expression holes at left and right hand side combined
with a relational operator. Both sides of expression holes in the
condition can be replaced by infix expressions (e.g., a+b) with arith-
metic operators, and the condition holes can further be combined
together with logical operators to support multiple clauses. To spec-
ify these holes in Java syntax, SketchFix provides a list of method
invocations and these invocations take two parameters: the target
type of the hole and a list of objects.

Base on the syntax of the holes, we define six AST node-level
transformation schemas (Figure 3) that take a faulty program p as
the input and produce sketches with holes.
Expression TransformationMexp : Given a suspicious statement
ℓ in the faulty program p, if it contains any variables, constant val-
ues, or field dereferences with the type t ,Mexp transforms this ex-
pression et to a partial expressionωt that represents any expression
candidates with the same type t . That is, the original expression will
be replaced by a hole SketchFix.EXP(t, new Object[]{v1,v2,...})

while the object list contains all visible variables, parameters and
fields.
Operator TransformationMop : Given a suspicious statement, if
it contains any arithmetic, relational or logical operators defined
in the syntax of holes (Figure 2), Mop transforms the operator to
an operator hole δ that denotes any operators of the same opera-
tor type. For instance, given a clause a > b in the faulty program,
Mop will replace this clause with a partial expression a ?? b where

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

Algorithm 1: Static Transformation for Sketch Generation
Input : Faulty program p , Fault locations L, Schemas M
Output : List of sketches Q

1 Function transformSketch (p , L, M) is
2 Q ← ∅;
3 foreach ℓ ∈ L do

/* apply one schema */

4 foreach σ ∈ M do

5 Q ← Q ∪ σ (p, ℓ) ;
/* apply two schemas */

6 i ← 0;
7 while i < M .size do

8 ω ← M[i](p, ℓ) ;
9 j ← i ;

10 while j < M .size do

11 Q ← Q ∪M[j](ω, ℓ), j + + ;
12 i + +;

the operator hole ?? can be any of {==, ! =, >, <,⩽,⩾}. The cor-
responding generated sketch is SketchFix.ROP(Integer.class, new

Object[]{a,b}) if a and b are of Integer type.
Overloading Transformation Mpar : Given a suspicious state-
ment, if it contains a method invocation f that has a overloading
method f ′, SketchFix tries to map parameter types for f and f ′

using an approach similar to the edit distance [9]. SketchFix only
considers overloading methods f ′ whose edit distances in terms of
the parameter types are no more than two. SketchFix generates
holes ωt for f ′ to represent parameters in different types.
Condition TransformationMcon : Given a suspicious condition
expression c ,Mcon introduces a new clause for the condition. The
new clause is represented as ωt rop ω ′t where ωt and ω

′
t represent

any expression candidates with the type t. The hole rop represents
relational operators. If t is a non-primitive type, SketchFix applies
relational operators “==” and “! =” to construct the clause, whereas
for primitive types, it applies all 6 relational operators. The new
clause is appended to the existing boolean expression c with logical
operators (“&&” and “| |”).
If-condition transformation Mi f : Given a suspicious location
ℓ, SketchFix introduces an if-condition before ℓ with a condition
“hole”. If SketchFix selects the target type t, the schema will in-
sert an if-condition as if (SketchFix.COND (t, new Object[]{v1,

v2,...}), where the target type t is derived from visible variables
v at the location ℓ.
Return-statement transformationMr tn : Given a suspicious lo-
cation ℓ, SketchFix inserts a return statement before ℓ. If the return
type of the current method is void, SketchFix simply inserts an
empty return statement, otherwise, SketchFix inserts a hole ωt
based on themethod’s return type, i.e., return (t) SketchFix.EXP(t,

new Object[]{v1, v2,...}).
To handle defects that require multiple holes to fix, such as the

omission of null-pointer-checking in Figure 1, we apply transfor-
mation schemas incrementally at the suspicious statements. Al-
gorithm 1 shows the static transformation approach that applies
no more than two schemas on the faulty program p. The loop at
line 4 applies each applicable schema on the suspicious location ℓ to
create sketches. The nested loop starting from line 7 enumerates all

combinations of two schemas and applies these two schemas at the
same location ℓ. Given the large search space of repair candidates
in open source projects, by default SketchFix applies no more than
two transformation schemas at the same location. We leave the
discussion of applying more schemas in Section 4.2.2.

Intuitively, the synthesis cost increases with more holes in the
sketch. We define the cost of transformation schemas as the number
of atomic holes (expression holes and operator holes) introduced
by the schemas. We prioritize the schemas with lower synthesis
cost. For instance, we favor expression (Mexpr) and operator (Mop)
manipulation over the condition transformation schema (Mcon) be-
cause theMcon inserts a relational operator hole and two expression
holes at the left and right hand side of the operator. This strategy is
in line with existing literatures [5, 24] based on the heuristic that
repair candidates semantically closer to the original programs are
relatively easier to comprehend and are more likely to be accepted
by the developers.

Existing automated repair techniques have utilized various sup-
portive resources to improve the repair efficacy, such as historical
data [25, 30], documents [27, 58], anti-patterns [53] and test gener-
ation [57]. Yet we preserve SketchFix’s practicality and leave the
improvement of fix patterns [28, 30, 58] as future work.

3.2 Practical Sketch Synthesis

After transforming the original faulty program to sketches based
on the schemas, SketchFix executes test cases to synthesize sketches
with on-demand candidate generation. SketchFix will not generate
concrete candidates for a hole until the test execution reaches the
hole. The candidates are created based on the runtime information.
For instance, we will not generate field dereferences for null vari-
ables (refer to [13]). Algorithm 2 describes the procedure of lazy
candidate generation and the sketching using backtracking search.
On-Demand Candidate Generation. When the test execution
first reaches a hole (line 2), SketchFix initializes the hole’s expres-
sion candidates based on the given visible variable list. For the
expression hole SketchFix.EXP(...), the method candidateGen()

at line 3 collects visible variables, constant values and field deref-
erences (refer to EdSketch [13]), and returns a candidate vector
(hole.candidates). Each candidate is assigned a unique identifier,
which is its index in the vector. Each hole’s candidate identifier is
initialized as -1, indicating that SketchFix has not selected a candi-
date for this hole (Algorithm 2 line 4). During the test execution,
the sketch engine non-deterministically selects an identifier using
choose() operator (line 5), and the candidate with the correspond-
ing identifier is used to fill in the hole. The execution continues
with this selection until it encounters a runtime exception or a
test failure, leading to a backtrack to the next choice of candidates,
i.e., incrementing the candidate identifier and selecting the next
candidate at runtime.
Synthesis with Backtracking Search. Algorithm 2 illustrates
the idea of synthesizing sketches with backtracking search, which
is embodied in the sketch engine EdSketch [13]. Instead of infer-
ring constraints and translating them to SAT for the repair synthesis,
EdSketch starts sketching by directly executing the given tests.
Whenever a runtime exception or a test failure occurs, EdSketch
backtracks by throwing a BacktrackException, which will enforce

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 2: On-Demand Candidate Generation based
on EdSketch [13]
Input : Sketches P , test suite T
Output :Complete Program P ′ that pass all test cases

1 Function synthesizeHole (hole) is
2 if hole.candidates==null then

/* First Access */

3 hole.candidates← candidateGen(hole);
4 if hole.id == -1 then

/* First Access */

5 hole.id← choose(0, hole.candidates.size-1) ;
6 return hole.candidates[hole.id] ;
7 Function sketch () is
8 do

9 try

10 exploreCurrentChoice();
11 catch BacktrackException
12 createNextChoice() ;
13 while incrementCounter();
14 Function exploreCurrentChoice() is
15 try

16 foreach test ∈ T do

17 test.run() ;
18 catch TestFailureException
19 throw BacktrackException;
20 printSolution() ;
21 searchExit(); /* if only needs the first solution */

the program to re-execute from the beginning (line 19). For each
re-execution, the sketch engine increments the counter for the
non-deterministic choose() operator and selects the next candidate
(line 12) to fill the hole. The synthesizing process terminates when
the space of candidate programs is exhausted or a complete pro-
gram that satisfies all tests is found. EdSketch embeds a range of
pruning strategies to effectively explore the space of candidates.
For instance, based on the program symmetry, the condition clause
a==b is equivalent to b==a, thus only one clause is considered.
Ranking Candidates Based on The Locality. With the notion
that variables declared closer to the hole are more likely to be
used [24, 58], we rank variables based on their proximity to the
hole location, i.e., the number of statements between the hole and
the variable declaration. We rank the target types of the hole with
a similar heuristic based on the number of statements between the
hole and variable declarations of this type in ascending order. For
instance, in our motivating example (Figure 1(B)), the condition
hole at line 5 favors the type ArrayList because the closest variable
is with this type.

In summary, we discuss how we systematically reduce the prob-
lem of program repair to program synthesis at the fine granularity.
We utilize the runtime behaviors of tests to prune a large amount
of search space with on-demand candidate generation.

4 EVALUATION

We evaluate SketchFix on the Defects4J benchmark [20], which
consists of 357 real defects from 5 open source Java applications. De-
fects4J contains various types of defects from open source projects

Table 1: Overview of the Evaluation Dataset and the Repair

Results of SketchFix

Project LoC Tests #Bug #Fix FL Sketch Repair
Time(m) Time(s) Time(m)

Chart 96k 2.2k 26 6/2 1.1 9.9 44.2
Closure 90k 7.8k 133 3/2 7.2 10.8 3.6
Lang 22k 2.2k 65 3/1 0.4 1.5 26.7
Math 85k 3.6k 106 7/1 1.8 3.7 4.0
Time 28k 4.1k 27 0/1 0.4 14.2 27.3

Total 357 19/7
#Fix shows the number of correct fixes and plausible fixes (repairs that pass

tests but fail in manual inspection).

to eliminate the bias of the dataset [39] in terms of the defects
types and the abundance of these defect classes [34, 39]. In Sec-
tion 4.2, we compare SketchFix’s repair efficacy and favored defect
types with other automated repair techniques. In Section 4.3, we
investigate if the on-demand candidate generation could effectively
reduce the search space of repair candidates. We finally discuss how
our AST node-level transformation influences the patch quality in
Section 4.4.

We address the following research questions in this section:

• What’s the repair efficacy of SketchFix compared to other
repair techniques?
• Does the on-demand candidate generation technique reduce
the search space of repair candidates?
• How does our fine-grained transformation affect the quality
of the generated repairs?

4.1 Experiment Setting

Defects4J is a collection of reproducible bugs with triggering tests
verified. SketchFix regards the test suite of each subject as the
correctness property and tries to synthesize a new program such
that all tests could pass.

To identify suspicious statements for the defects, we use the ASM
bytecode analysis framework [3] together with JavaAgent [14] to
capture the test coverage of both failing and passing test execu-
tions. SketchFix uses an existing spectrum-based fault localization
technique called Ochiai [1] to rank potential faulty statements
based on their suspiciousness. Existing empirical studies [52, 59]
illustrate that Ochiai is more effective on localizing the faults in
object-oriented programs than other techniques. Ochiai has been
applied to numerous repair techniques [7, 25, 35, 37, 58], including
all four repair techniques [7, 25, 35, 58] we use in the compari-
son. We rank the suspicious statements based on the Ochiai [1]
suspiciousness value for each statement covered by failing exe-
cutions and select the top 50 suspicious statements by default. If
multiple statements have the same suspiciousness score, we order
them randomly. We leave the discussion for the number of selected
statements in Section 4.2.2.

Table 1 presents the basic information of the subjects used in
the evaluation, including the lines of code (LoC), the number of
test cases (Test), the number of defects collected in the benchmark

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

SketchFix
15

3
Nopol

2
Astor

1
21

SketchFix
7/10

15
ACS

12/7
HDRepair

2
9/14 1

00

HDRepair [25] assumes that the faulty methods are known in advance.
SketchFix fixes 8 more defects with this assumption, 5 of them are also

fixed by HDRepair. We report two results without and with the
assumption.

Figure 4: Comparison of Correct Patches Generated by

SketchFix and Other Repair Techniques

(#Bug), and the average performance time to identify faulty state-
ments (FL Time). To translate faulty programs to sketches, we im-
plement transformation schemas using JavaParser [15], a tool that
parses and transforms Java programs. The column Sketch Time de-
notes the average performance time to generate program sketches.
SketchFix explores the search space of repair candidates for each
program sketch until the space of candidates is exhausted or we
find a pre-defined number of repairs that pass all tests. Currently
we terminate after finding the first repair yet we set the number of
output repairs as configurable. We report the average performance
time SketchFix takes to find the first repair (column Repair Time)
following the spirit of existing literatures [29, 37]. We execute only
the tests that reach the holes following the spirit of recent work
on test pruning [38]. We manually check all synthesized repairs
against human-written patches from the version history, and report
the number of correct repairs and plausible ones that pass all tests
but fail in manual inspection in column #Fix.

All performance experiments are conducted on a platform with
4-core Intel Core i7-6700 CPU (3.40 GHz) and 16 Gigabyte RAM on
Ubuntu Linux 16.04.

4.2 Repair Efficacy

In this section, we answer the first research question by com-
paring SketchFix’s repair efficacy with other repair techniques—
Astor [35], Nopol [7], ACS [58] and HDRepair [25]. We select
these four publicly available repair techniques that have been eval-
uated against the Defects4J benchmark and ignore others which
either focus on another language [29, 40, 56] or are not publicly
available [22, 24]. All four techniques use Ochiai [1] to identify the
suspicious statements. Note that HDRepair assumes that the faulty
methods are known in advance and performs Ochiai to identify the
faulty statements in the given methods. We thus add this assump-
tion when conducting the comparison with HDRepair. Due to the
difference in experiment platforms, we can hardly reproduce all
experiments for these four techniques, we thus mainly refer to the
generated repairs provided by the authors and refer to their results
of the manual inspection.

Table 2: Manual Assessment Result of Patches Generated by

SketchFix and Other Repair Approaches

No. SF A N C H No. SF A N C H

CH1 ✓ ? × × ✓ M5 ✓ ✓ × ✓ ✓

CH3 × ? ? × × M8 × ? × × ×

CH5 × ? × × × M22 × × × × ✓

CH7 × ? × × × M25 × × × ✓ ×

CH8 ✓ × × × ✓ M28 × ? × × ×

CH9 ✓ × × × × M32 × ? ? × ×

CH11 ✓ × × × × M33 ✓ × ? × ×

CH13 ? ? ? × × M34 × × × × ✓

CH14 × × × ✓ × M35 × × × ✓ ×

CH15 × ? × ✓ × M40 × ? ? × ×

CH19 × × × × × M42 × × ? × ×

CH20 ✓ × × × × M49 × ? ? × ×

CH21 × × ? × × M50 ✓ ✓ ✓ × ✓

CH24 ✓ × × × × M53 × ✓ × × ✓

CH25 × ? ? × × M57 × × ? × ×

CH26 ?∗ ? ? × × M58 × × ? × ×

C1 ×∗ × × × × M59 ✓ × × × ×

C10 × × × × ✓ M61 × × × ✓ ×

C11 ×∗ × × × × M69 × × ? × ×

C14 ✓ × × × ✓ M70 ✓ ✓ × × ✓

C51 × × × × ✓ M71 × ? ? × ×

C62 ✓ × × × ✓ M73 ? ✓ ? × ×

C70 ?∗ × × × ✓ M78 × ? ? × ×

C73 ?∗ × × × ✓ M80 × ? ? × ×

C126 ✓ × × × ✓ M81 × ? ? × ×

L6 ✓ × × × ✓ M82 ✓ ? ? ✓ ✓

L7 × × ? ✓ × M84 × × × × ×

L10 ×∗ × × × ✓ M85 ✓ ? ? ✓ ×

L24 × × × ✓ × M87 × × ? × ×

L35 × × × ✓ × M88 × × ? × ×

L39 × × × × × M89 × × × ✓ ×

L43 × × × × ✓ M90 × × × ✓ ×

L44 × × ✓ × × M93 × × × ✓ ×

L46 × × ? × × M95 × ? × × ×

L51 ?∗ × ? × ✓ M97 × × ? × ×

L53 × × ? × × M99 × × × ✓ ×

L55 ✓ ? ✓ × × M104 × × ? × ×

L57 × × × × ✓ M105 × × ? × ×

L58 × × ✓ × × T4 ? ? × × ×

L59 ✓ × × × ✓ T11 × ? ? × ×

M2 × ? × × × T15 × × × ✓ ×

M3 × × × ✓ × T19 ×∗ × × × ✓

M4 × × × ✓ ×

SF represents SketchFix, A represents Astor [35], N represents Nopol [7],
C represents ACS [58], and H represents HDRepair [25]. ✓represents

correct fix, ? represents plausible fix, and × represents not generating fix.
We use the * to mark the new generated fixes by providing the faulty
methods when comparing with HDRepair. We highlight the correct

repairs generated by SketchFix.

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

(A) A bug fix for Chart24 generated by SketchFix

//Human-Written patch for the defect
private int upperBound, lowerBound;
public Paint getPaint(double value) {
double v=Math.max(value,this.lowerBound);
- int g=(int)((value-this.lowerBound)/...;
+ int g=(int)((v-this.lowerBound)/...; ...}
// A sketch generated by SketchFix and the synthesis result
public Paint getPaint(double value) {
double v=Math.max(value,this.lowerBound);
int g=(int)(((Integer)SketchFix.EXP(int.class,
new Object[]{v,value,...}) - this.lowerBound)/...;}

// Synthesized solution: SketchFix.EXP: v

(B) A bug fix for Math73 generated by Astor

//Human-Written patch for the defect Math73
if (yInitial*yMax<0) return solve(f,initial,yInitial,...);

+ if (yMin*yMax>0) throw new llegalArgumentException(...);
return solve(f, min, yMin,...);

//bug fix generated by Astor with API replacement
if (yInitial*yMax<0) return solve(f,initial,yInitial,...);

- return solve(f, min, yMin, max,...);
+ return solve(f, min, max);

(C) A bug fix for Lang58 generated by Nopol

//Human-Written patch for the defect
//Omit complex clauses for simplicity
- if (dec == null && exp == null && (A && B) || C) {..}
+ if (dec == null && exp == null && B && (A || D)) {..}
//bug fix generated by Nopol that is regarded as correct
- if (dec == null && exp == null && (A && B) || C) {..}
+ if ((dec == null) && (exp == null)) {..}

(D) A bug fix for Time15 generated by ACS

//Human-Written patch for the defect and ACS's result is
// semantically identical to this.
+ if (val1 == Long.MIN_VALUE) {
+ throw new ArithmeticException("...");}

(E) A bug fix for Math34 generated by HDRepair

//Human-Written patch for the defect and HDRepair's result
// is identical to this.
public Iterator<Chromosome> iterator() {
+ return chromosomes.iterator();
- return getChromosomes().iterator(); }

Figure 5: Comparison of Favored Defect Classes for Sketch-

Fix and Other Repair Techniques

Figure 4 denotes Venn Diagrams for the defects that can be cor-
rectly repaired by SketchFix and other techniques. Given that
SketchFix, Astor and Nopol do not require supportive informa-
tion such as documents (ACS [58]) or historical data (HDRepair [25]),
we separate the comparison into two Venn Diagrams. Table 2
presents the repair result through manual inspection.

4.2.1 Defect Classes favored by the repair techniques . Different
repair techniques focus on different types of bugs [39] (e.g., Nopol
only deals with condition faults). We are not intended to perform an
apple-to-apple comparisonwith these repair techniques, instead, we
highlight favored defect classes of SketchFix and other techniques
with examples.
SketchFix. Figure 5 (A) presents a defect that can be fixed by
SketchFix. In this example, SketchFix applies theMexp schema
to a type-casting expression at the AST node-level. It synthesizes a
variable v for the expression hole to replace the original variable
value. Note that the constraint-solving-based repair techniques [36,
37, 40] in general only modify expressions in conditions or the
right-side of assignments with boolean or integer types, other tech-
niques that leverage statement-level mutation [35] or supportive
information [25, 58] can hardly repair the defect because this AST
node-level replacement has a rare chance to be duplicated in ex-
isting program context, history [25] or documents [58]. Table 3
reports the schema types that finally generate repairs for each
defect. SketchFix correctly generates repairs for 19 subjects and
around half of them (9 subjects) yield expression manipulation.
The manipulation of operators and variable types (parameters for
overloading methods) correctly fixes another 6 defects, and the rest
schemas or their combinations fix another 4 subjects. For the 6
defects that can only be fixed by SketchFix with respect to other
four repair techniques (Table 2), 4 of them yield expression manip-
ulation, one of them is variable type manipulation in overloading
methods, and the last one applies an insertion of the if-condition.
Astor. Astor is a program repair library that contains three
repair modes based on the genetic algorithm, statement/condition
removal, and operator mutation. Figure 5 (B) shows a defect that can
be fixed by Astor. It replaces the return expression with another
method invocation. The new return-statement exists in the current
program context, and the Astor correctly generates this repair
based on the statement-level search. SketchFix generates the same
repair by transforming the original invocation to an overloading
method with holes at the AST node-level.
Nopol. Nopol is a repair technique that focuses on the condition
faults by modifying existing if-conditions or adding pre-conditions.
Figure 5 (C) shows a defect and a bug fix generated by Nopol.
The generated patch removes multiple clauses and is reported as
correct in the literature [33]. SketchFix fails to repair this intricate
condition defect that requires changes on multiple clauses.
ACS. ACS leverages document analysis to rank patches and it
advances other techniques on fixing the omission error of the ex-
ception handling (if-throw). Figure 5 (D) presents an example of
the repair generated by ACS which is semantically equivalent to
the human-written patch. SketchFix is not designed to handle
exception omission and we leave this as future work.
HDRepair. HDRepair prioritizes patches based on the mined
repair models from historical data. It prefers the repairs that require
the method invocation replacement. Figure 5 (E) shows a repair
generated by HDRepair that replaces an expression with a method
invocation. SketchFix can be extended to support API synthesis
with a similar idea of the on-demand candidate generation [60].

Our experiment indicates that SketchFix performs particularly
well in the defect classes that require manipulations of expressions
and variable types. Recent empirical studies on repair models [28,

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

Table 3: SketchFix Repair Result for Each Subject

Fix Type Sk. Sp. cSk. Exe Cor T(m)

1 CH1 C Mrop 1.7k 301.2k 209 2.8k 2.9k 208.5
2 CH8 C Mexp 607 8.7k 83 663 663 32.9
3 CH9 C Mcon 744 6.9k 678 100 100 5.6
4 CH11 C Mexp 249 2.4k 25 26 31 7.2
5 CH13 P Mpar 813 79.8k 115 914 - -
6 CH20 C Mexp 137 2.9k 127 206 206 14.9
7 CH24 C Mexp 17 378 1 4 4 0.5

8 CH26 P Mi f , 77 1.6k 21 105 - -
Mr tn

9 C14 C Mexp 2.6k 46.1k 144 4 36 40.7
10 C62 C Mrop 490 4.9k 58 72 92 8.8
11 C70 P Mpar 1.2k 18.9k 108 28 - -
12 C73 P Mrop 476 5.2k 59 40 - -
13 C126 C Mcon 462 5.6k 32 8 64 7.3

14 L6 C Mexp 255 3.0k 1 51 424 2.9

15 L51 P Mi f , 222 2.4k 43 28 - -
Mr tn

16 L55 C Mcon 108 1.6k 76 62 71 86.2
17 L59 C Mexp 188 1.8k 48 5 5 0.1

18 M5 C Mexp 1 72 1 1 1 0.1
19 M33 C Mpar 1.1k 17.8k 446 221 631 20.2
20 M50 C Mcon 655 6.0k 43 22 92 0.9
21 M59 C Mexp 259 4.0k 36 7 7 0.4
22 M70 C Mpar 139 2.8k 60 8 8 0.1

23 M73 P Mi f , 383 6.2k 76 59 - -
Mr tn

24 M82 C Mrop 500 6.0k 68 36 803 12.1
25 M85 C Mrop 407 5.2k 78 590 590 23.1

26 T4 P Mpar 555 23.4k 40 274 - -
Fix represents whether it is a correct fix (C) or a plausible fix (P). Type
denotes the schema types that yield the repair. Sk. shows the number of
generated sketches. Sp. presents the total search space of candidates. cSk.
is the number of compiled sketches when SketchFix generates first repair.
Exe represents the number of candidates SketchFix explores when it
generates the first repair passing all tests. Cor represents that number
when SketchFix generates the first correct repair based on the manual
inspection. T(m) reports the performance time to synthesize a correct fix.

34, 61] show the abundance of such defects. Yet SketchFix is not
designed to handle statement-level mutation or exception handling.

4.2.2 Search Space Extension. In this section, we extend the
search space of repair candidates to consider more suspicious state-
ments and transformation schemas.
Suspicious Locations. By default, we consider top 50 suspicious
statements as we notice that SketchFix cannot fix many defects
with an increase of bound whereas the cost of the program repair
increases significantly. If we increase bound to 100, SketchFix cor-
rectly fixes 2 more defects: Chart26 and Lang10. HDRepair [25]
fixes defects with given faulty methods. With the same condition,
SketchFix correctly fixes 6 more defects: Closure1, Closure11, Clo-
sure70, Closure73, Lang51 and Time19. This result also indicates
that concise fault localization techniques can greatly improve the
efficacy of program repair techniques.

Multiple Transformation Schemas. As a trade-off between the
cost of experiments and the repair efficacy, SketchFix applies no
more than two transformation schemas at a suspicious location.
The number of generated sketches and corresponding candidates
grow quickly with more transformation schemas. SketchFix fixes 4
more bugs with 3 schemas at a given location (Closure130, Lang58,
Math53 and Time4).
Repair at Multiple Locations. We introduce an incremental ap-
proach to fix defects at multiple locations based on the reduction
of the failing test cases [12]. If there exists multiple failing test
cases, we localize the defect with one failing test case and all pass-
ing test cases, let SketchFix generate sketches and evaluate if
any synthesized solution can eliminate one or more failing test
cases. If a synthesized version reduces the number of the failing
test cases, SketchFix applies this repair and keeps on considering
other failing test cases. This incremental repair technique is based
on the assumption that at least one failing test case can be fixed
by synthesizing a sketch and failing test cases are independent
with each other such that the fix of one test case will not affect
others. Although the validity of this assumption remains unsettled,
SketchFix correctly fixes another 3 defects (Chart14, Math4, and
Math22) based on this assumption.

4.2.3 Threats to Validity. Although Defects4J contains hun-
dreds of defects from multiple open-source projects, this defect
benchmarkmay unavoidably yield the bias of the evaluation datasets
[39] with respect to the defect types and the abundance of the de-
fect classes [34, 39]. We compare our result with other four repair
techniques that have been evaluated with the same benchmark
and explain the favored defect classes for each technique. Based
on the human-written patches from the version history, we assess
the correctness of the generated repairs. However, this assessment
may still be biased.

4.3 Search Space Reduction

In this section, we answer the second research question on the
efficacy of our on-demand candidate generation.

SketchFix is able to generate repairs for the subjects shown
in Table 3. With the default setting, these repairs include correct
fixes that pass the manual inspection and the plausible ones that
pass all tests but are regarded as semantically-different from the
developer-written patches. The column Fix denotes whether the
repair is correct (C) or plausible (P). The column Type represents the
transformation schema types that are used to fix the bugs. If more
than one schema combination can generate repairs that satisfy all
test assertions, we report the first schema combination. The column
Sk. shows the total number of sketches generated by SketchFix
considering all selected locations, and the column Sp. lists the total
search space of the candidates that the sketches represent. For
instance, if SketchFix introduces a non- deterministic condition
clause for a primitive type, assume that there are 10 expression
candidates at both left and right hand side, the search space of
candidates for this sketch is 600 (6 × 10 × 10) as two expressions
are combined with a relative operator which has 6 options (==, ! =
, >, <,⩽,⩾). The column cSk. presents the number of compiled
sketches when SketchFix generates the first repairs that pass all
tests. The column Exe. shows the number of candidates that have

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

been executed against the test suite when SketchFix generates the
first repairs satisfying all tests. And the column Cor. represents
the number when SketchFix finds the first correct repairs. The
column T(m) illustrates the total performance time in minutes when
SketchFix finds the first correct fix, including the time for the
compilation and the test execution.

With the on-demand candidate generation, every sketch will be
compiled once which may represent thousands of candidates. Up to
the time that SketchFix finds the first repair, it compiles 1.6% (avg.
#compiled sketches/#space). If SketchFix wants to exhaustively
search the entire space of repair candidates, it only compiles 7% (avg.
#sketches/#space) of all candidates. SketchFix utilizes runtime
information to further prune the candidates that actually need
to be verified by the test execution. For example, SketchFix will
not generate candidates for the condition body if the condition is
evaluated to be false. The experiment shows that SketchFix only
executes 3% of candidates (avg. #Gen/#Space) when it finds the first
repairs that pass all tests.

On average, SketchFix spends 9 minutes generating sketches
with fault localization and 23 minutes generating the first repairs
that satisfy all test assertions. To compare our performance with
other repair techniques, we refer to the performance time reported
in the literatures [7, 33, 35, 58] as we are not able to reproduce
all experiments of other techniques due to the various experiment
platforms. Astor and Nopol spend 30-40 minutes on average for
each repair on a powerful machine. HDRepair spends an average
of 20 minutes generating patches with given methods. Without
reporting the performance time for document analysis, ACS’s patch
generation time (max. 28minutes, median 5.5minutes) is not fairly
comparable with our repair technique. Without pre-processing his-
torical data or document analysis, our practical repair technique
compares well with other repair techniques on performance. We
omit the comparison on the number of executed candidates across
different repair techniques, because different techniques use differ-
ent templates and the choice of templates determines the search
space of the candidates.

4.4 The Quality of Generated Repairs

Weanswer the last research question in this section by investigating
if our AST node-level transformation helps generate high-quality
patches. Shown as Figure 6, we illustrate the quality of the repairs
generated by SketchFix using an example.

Based on the AST node-level transformation schema, SketchFix
transforms a method invocation to its overloading method, and cor-
rectly repairs the defect by replacing the variable maxUlps (integer)
to epsilon (double). This fine-grained transformation is in line with
the notion that the repairs which introduce smaller perturbations
to the original programs are more likely to be correct from the
perspective of the developers. With the same notion, SketchFix fa-
vors expression manipulations for the overloading method (Mpar)
rather than the if-condition insertion (Mi f) as the insertion of a new
if-condition will introduce more atomic holes than the expression
manipulation. SketchFix generates sketches shown as Figure 6 (B)
and synthesizes this sketch as expected.

The repair techniques Astor, ACS, and HDRepair fail to gener-
ate repairs for this bug. Nopol fixes this defect by adding a new if

block. Although both solutions might be semantically equivalent,

(A) A human-written patch for the defect Math33

public class Precision {
public static int compareTo(double x,double y,double eps)..
public static int compareTo(double x,double y,int maxUlps)..
}
/* SimplexTableau.java */
private final int maxUlps;
private final double epsilon;
protected void dropPhase1Objective() {
- if (Precision.compareTo(entry, 0d, maxUlps)>0){...
+ if (Precision.compareTo(entry, 0d, epsilon)>0){...
}

(B) A sketch generated by SketchFix and a synthesized solution

/* SimplexTableau.java as sketch */
protected void dropPhase1Objective() {
if (Precision.compareTo(entry, 0d, (Double) SketchFix.EXP(
Double.class, new Object[]{..,epsilon,maxUlps,..}))>0){..
}
// Synthesized solution: SketchFix.EXP: epsilon

(C) A plausible repair generated by Nopol

protected void dropPhase1Objective() {
if (Precision.compareTo(entry, 0d, maxUlps) > 0) {

+ if (numSlackVariables<constraints.size()) {...}}

Figure 6: Patches Generated by SketchFix and Nopol for

the defect Math33

we believe that the repair generated from the fine-grained trans-
formation introduces a smaller perturbation to the original faulty
program and is conceptually easier to comprehend.

Apart from the fine-grained transformation, our candidate rank-
ing strategy based on the locality also helps generating high-quality
patches. Figure 5 (A) shows an expression manipulation that re-
places the variable valuewith v, which is the maximum value of the
variable value and the field lowerBound. Both v and lowerBound sat-
isfy all test assertions, yet SketchFix favors the variable v because it
is defined at the previous statement of the hole whereas lowerBound
is a field in the class. With the insight that the variables defined
closer to the holes are more likely to be used, our practical candi-
date ranking strategy is in line with other repair techniques that
aim to improve patch quality, such as anti-patterns [53], program
distance [5] and syntactic similarity [24].

5 RELATEDWORK

This section compares SketchFix with other approaches on pro-
gram repair and program synthesis.
Generate-and-Validate Repair. Generate-and-Validate repair
techniques apply a set of transformations to generate a set of can-
didates and validate each candidate against the given test suite. To
efficiently explore the immense search space of repair candidates
in large-scale applications, these automated program repair tools
leverage genetic algorithms [56], random search [43], semantic

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

search [21] and adaptive search [55] to find a repair that let all test
cases pass. Kali [44] applies code removal and Debroy et al. [6]
employ a set of mutation operators (e.g., arithmetic operators “+”
and “×”) to fix faults. Astor [35] is a program repair library that
includes the re-implementations for GenProg [56], Kali [44], and
mutation-based repair [6] to fix Java code.

To prioritize repairs, PAR manually learns repair patterns from
the human-written patches [22]. Other G&V techniques automati-
cally mine repair models from historical data [25, 30]. CodePhage
[46] eliminates defects by transferring correct code across applica-
tions. Genesis [28] also automatically infers repair models based
on the human-written patches. Some recent works leverage docu-
ment analysis [27, 58], anti-patterns [53], test generation [57], and
location selection with test pruning [38] to enhance repair.

SketchFix differs from these G&V approaches in that it tightly
integrates the generation and validation phase of the repair candi-
dates and only generates on-demand ones during the test execution.
This integration substantially reduces the search space of the repair
candidates and effectively prunes large amount of re-compilation
and re-execution of the potential repairs. Moreover, a number of
approaches that aim to improve the patch quality [53, 57] are com-
plementary to ours. In particular, we can use mined repair mod-
els [25, 28, 30] and document analysis [58] to prioritize candidates
and support more transformation schemas at a fine granularity.
Constraint-Solving Repair. Program repair techniques such as
Nopol [7] and Angelix [37] dynamically collect path conditions
and infer constraints based on the passing and failing test execu-
tions [36, 40]. These constraints are further translated to SAT for
SAT/SMT solvers to synthesize a repair that satisfies all inferred
specifications. SPR [29] infers a target value for the faulty condition
based on the test suite. MintHint uses the symbolic execution and
statistical correlation analysis for the patch ranking. S3 [24] extends
the semantics-based family like SemFix [40] and Angelix [37] to
incorporate a set of ranking criteria such as the variation of the
execution traces similar to Qlose [5].

By inferring constraints based on the execution and translat-
ing these constraints to SAT, these repair techniques may yield
incomplete translation [24, 37] or impractical problem of creating
models for all relevant libraries [36, 40]. In general, they exclusively
reason about boolean or integer types in conditions or the right
side of assignment. They may suffer from the limitations of the
symbolic execution engines to extract constraints. E.g., Angelix
cannot execute libraries such as python, lighttpd and fbc due to the
limitation of KLEE. SketchFix is substantially different from these
translation-based techniques as its sketch backend [13] explores
the actual program behaviors in presence of libraries and does not
translate to SAT/SMT. SketchFix thus works well in manipulat-
ing expressions and handles a whole range of variable types and
transformation locations, e.g., SketchFix fixes a bug by replacing
a variable in a cast expression at the AST node-level. In addition,
SketchFix is not confined to the structure of the subjects as long
as the subjects can be executed. Therefore, it can be applied to the
projects like Closure compilerwhose test cases are organized using
scripts rather than standard JUnit test cases. This non-conventional
structure has obstructed some repair techniques like Astor.

Automated program repair based on the formal specifications
has had numerous success. AutoFix-E [54] is able to repair complex

data structure for Eiffel program, but it relies on human-written
contracts to generate fixes. Gopinath et al. [11] use pre- and post-
conditions written in Alloy specification language to identify de-
fects and repair the program, and were the first to conjecture the
reduction of program repair to program sketching [12] from the
best of our knowledge. Singh et al. [47] use specification to generate
feedback for students’ faulty python program. Kneuss et al. [23]
generate test inputs automatically from the specifications to fix
faulty Scala programs using deductive program synthesis. Yet for-
mal specifications are usually not available for projects written in
imperative languages.
Domain-Specific Repair. ClearView [42] eliminates security
vulnerability with inferred invariants. Demsky et al. [8] use Daikon
to infer invariants for data-structure repair. Vejovis [19] infers
possible string replacement for DOM-related faults in JavaScript
code through string constraint solver. Similar to Vejovis, PHPRe-
pair [45] uses string constraint-solving to fix PHP programs that
generateHTML. These approaches share similar spirit with constraint-
solving repair and thus may encounter similar limitations.
Program Synthesis. Program synthesis has shown its promise
on synthesizing code in small well-defined domains such as bit-
vector logic [18] and data structures [48]. In particular, sketch-based
synthesis [50] asks programmers to write a program skeleton con-
taining holes, and uses counter-example-guided inductive synthesis
to complete the holes. However, these approaches require to trans-
form constraints to SAT formulas, which might be impractical in
large-scale projects with external libraries. EdSketch [13] is a prac-
tical execution-driven sketching engine that synthesizes sketches
with backtracking search, yet it requires users to provide partial
programs as the inputs. Recent work [60] enhanced EdSketch to
support method sequence generation for API completion. Different
from EdSketch and other program synthesis techniques [10, 41, 51],
we translate existing faulty programs to sketches with the purpose
of repairing the original faulty programs.

6 CONCLUSION

This paper introduced an on-demand repair technique, SketchFix,
which tightly integrates the traditionally separate phases of gener-
ation and validation of candidate programs that represent potential
fixes to consider for the given faulty program. Utilizing runtime
information, this integration effectively prunes a large portion of
the search space for the candidate fixes. The technique reduces pro-
gram repair to program synthesis by transforming faulty programs
to sketches at the AST node-level granularity. SketchFix employs
an execution-driven sketching engine to complete the sketches
using a backtracking search. The experimental results show that
SketchFix works well in manipulating expressions, and the fine-
grained transformation schemas it employs allow it to generate
high-quality patches.

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foundation
(NSF Grant Nos. CCF-1319688, CCF-1704790, and CCF-1718903).
We thank Mukul Prasad and Yuqun Zhang for discussions and
comments.

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Testing - Practice and Research Techniques,
5th International Academic and Industrial Conference, TAIC PART 2007.

[2] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. 2017. Repairing event race errors by controlling
nondeterminism. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 289–299.

[3] ASM Java bytecode manipulation and analysis framework 2017. (2017). http:
//asm.ow2.org/ Accessed: 07-30-2017.

[4] Closure Compiler 2017. https://github.com/google/closure-compiler. (2017). Ac-
cessed: 2018-02-10.

[5] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification - 28th Inter-
national Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II. 383–401.

[6] Vidroha Debroy and W. Eric Wong. 2010. Using Mutation to Automatically Sug-
gest Fixes for Faulty Programs. In 3rd IEEE International Conference on Software
Testing, Verification and Validation, ICST 2010. 65–74.

[7] Favio Demarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic repair of buggy if conditions and missing preconditions with SMT. In
6th International Workshop on Constraints in Software Testing, Verification, and
Analysis, CSTVA 2014.

[8] Brian Demsky, Michael D. Ernst, Philip J. Guo, StephenMcCamant, Jeff H. Perkins,
and Martin C. Rinard. 2006. Inference and enforcement of data structure consis-
tency specifications. In International Symposium on Software Testing and Analysis,
ISSTA 2006. 233–244.

[9] Edit Distance 2017. (2017). https://en.wikipedia.org/wiki/Edit_distance Accessed:
07-30-2017.

[10] Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: dynamic and interactive synthesis of code snippets. In 36th
International Conference on Software Engineering, ICSE 2014. 653–663.

[11] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-Based Program Repair Using SAT. In Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS
2011. 173–188.

[12] Jinru Hua and Sarfraz Khurshid. 2016. A Sketching-Based Approach for Debug-
ging Using Test Cases. In Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016. 463–478.

[13] Jinru Hua and Sarfraz Khurshid. 2017. EdSketch: execution-driven sketching for
Java. In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017. 162–171.

[14] Java programming language agents 2017. (2017). https://docs.oracle.com/javase/
7/docs/api/java/lang/instrument/package-summary.html Accessed: 07-30-2017.

[15] JavaParser Transformation Tool 2017. http://javaparser.org. (2017). Accessed:
2017-07-30.

[16] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. 2015.
JSketch: sketching for Java. In 23th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE 2015. 934–937.

[17] JFreeChart Project 2017. (2017). http://www.jfree.org/jfreechart/ Accessed:
07-30-2017.

[18] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In 32th International Conference on
Software Engineering, ICSE 2010. 215–224.

[19] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. 2014. Vejovis: sug-
gesting fixes for JavaScript faults. In 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. 837–847.

[20] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of ex-
isting faults to enable controlled testing studies for Java programs. In International
Symposium on Software Testing and Analysis, ISSTA 2014. 437–440.

[21] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
Programs with Semantic Code Search. In 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015. 295–306.

[22] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In 35th International
Conference on Software Engineering, ICSE 2013. 802–811.

[23] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive Program
Repair. In Computer Aided Verification - 25th International Conference, CAV.

[24] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax- and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. 593–604.

[25] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1.
213–224.

[26] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges
in automatic software repair. Software Quality Journal 21, 3 (2013), 421–443.

[27] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2Fix: Automatically
Generating Bug Fixes from Bug Reports. In Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg,
March 18-22, 2013. 282–291.

[28] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. 727–739.

[29] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In Proceedings of the 23th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE 2015. 166–178.

[30] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016. 298–312.

[31] Fan Long andMartin C. Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016.
702–713.

[32] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Hal-
fond. 2017. Automated repair of layout cross browser issues using search-based
techniques. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017. 249–260.

[33] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936–1964.

[34] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176–205.

[35] Matias Martinez and Martin Monperrus. 2016. ASTOR: a program repair library
for Java (demo). In International Symposium on Software Testing and Analysis,
ISSTA 2016. 441–444.

[36] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Look-
ing for Simple Program Repairs. In 37th International Conference on Software
Engineering, ICSE 2015. 448–458.

[37] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In 38th International
Conference on Software Engineering, ICSE 2016.

[38] Benjamin Mehne, Hiroaki Yoshida, Mukul Prasad, Koushik Sen, Divya Gopinath,
and Sarfraz Khurshid. 2018. Accelerating Search-based Program Repair. In 11th
IEEE Conference on Software Testing, Validation and Verification (ICST). To appear.

[39] Martin Monperrus. 2014. A critical review of "automatic patch generation learned
from human-written patches": essay on the problem statement and the evalua-
tion of automatic software repair. In 36th International Conference on Software
Engineering, ICSE 2014. 234–242.

[40] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In 35th International
Conference on Software Engineering, ICSE 2013. 772–781.

[41] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. 2014. Test-
driven synthesis. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2014. 43.

[42] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin C.
Rinard. 2009. Automatically patching errors in deployed software. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009. 87–102.

[43] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In 36th International
Conference on Software Engineering, ICSE ’14. 254–265.

[44] Zichao Qi, Fan Long, Sara Achour, and Martin C. Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In International Symposium on Software Testing and Analysis, ISSTA 2015.
24–36.

[45] Hesam Samimi, Max Schäfer, Shay Artzi, Todd D. Millstein, Frank Tip, and
Laurie J. Hendren. 2012. Automated repair of HTML generation errors in PHP
applications using string constraint solving. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 277–287.

[46] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015.
Automatic error elimination by horizontal code transfer across multiple appli-
cations. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015. 43–54.

[47] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2013. 15–26.

http://asm.ow2.org/
http://asm.ow2.org/
https://github.com/google/closure-compiler
https://en.wikipedia.org/wiki/Edit_distance
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
http://javaparser.org
http://www.jfree.org/jfreechart/

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

[48] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing data structure
manipulations from storyboards. In 19th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2011. 289–299.

[49] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
cure worse than the disease? overfitting in automated program repair. In 23th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE 2015. 532–543.

[50] Armando Solar-Lezama. 2013. Program sketching. STTT 15, 5-6 (2013), 475–495.
[51] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From program ver-

ification to program synthesis. In 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010. 313–326.

[52] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. In International Symposium on Software Testing and Analysis, ISSTA 2013.
314–324.

[53] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016. 727–738.

[54] Yi Wei, Yu Pei, Carlo A. Furia, Lucas Serpa Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. 2010. Automated fixing of programs with contracts.
In International Symposium on Software Testing and Analysis, ISSTA 2010. 61–72.

[55] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging pro-
gram equivalence for adaptive program repair: Models and first results. In 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2013.

356–366.
[56] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically finding patches using genetic programming. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. 364–374.

[57] Qi Xin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches through
test case generation. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,
2017. 226–236.

[58] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. 416–426.

[59] Jifeng Xuan and Martin Monperrus. 2014. Learning to Combine Multiple Rank-
ing Metrics for Fault Localization. In IEEE International Conference on Software
Maintenance and Evolution, ICSME 2014. 191–200.

[60] Zijiang Yang, Jinru Hua, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Test-
Execution-Driven Sketching for Complex APIs. In 11th IEEE Conference on Soft-
ware Testing, Validation and Verification (ICST). To appear.

[61] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Ger-
many, September 4-8, 2017. 740–751.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 AST Node-Level Transformation
	3.2 Practical Sketch Synthesis

	4 Evaluation
	4.1 Experiment Setting
	4.2 Repair Efficacy
	4.3 Search Space Reduction
	4.4 The Quality of Generated Repairs

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

