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ABSTRACT

Regression testing checks that recent project changes do not break
previously working functionality. Although important, regression
testing is costly when changes are frequent. Regression test selec-
tion (RTS) optimizes regression testing by running only tests whose
results might be affected by a change. Traditionally, RTS collects
dependencies (e.g., on files) for each test and skips the tests, at a
new project revision, whose dependencies did not change. Existing
RTS techniques do not differentiate behavior-preserving transfor-
mations (i.e., refactorings) from other code changes. As a result,
tests are run more frequently than necessary.

We present the first step towards a refactoring-aware RTS tech-
nique, dubbed Reks, which skips tests affected only by behavior-
preserving changes. Reks defines rules to update the test depen-
dencies without running the tests. To ensure that Reks does not
hide any bug introduced by the refactoring engines, we integrate
Reks only in the pre-submit testing phase, which happens on the
developers’ machines. We evaluate Reks by measuring the savings
in the testing effort. Specifically, we reproduce 100 refactoring tasks
performed by developers of 37 projects on GitHub. Our results show
that Reks would not run, on average, 33% of available tests (that
would be run by a refactoring-unaware RTS technique). Addition-
ally, we systematically run 27 refactoring types on ten projects. The
results, based on 74,160 refactoring tasks, show that Reks would
not run, on average, 16% of tests (max: 97% and SD: 24%). Finally,
our results show that the Reks update rules are efficient.
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1 INTRODUCTION

Regression testing runs available tests against each project revision
to check that recent changes did not break previously working
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functionality. Although important, regression testing is costly due
to both the number of tests and the number of revisions, as recently
reported by large software organizations, including Google and
Microsoft [12, 30, 31, 70, 74].

Regression test selection (RTS) [21, 60, 79] techniques optimize
regression testing by skipping tests that are unaffected by recent
project changes. Traditionally, an RTS technique collects dependen-
cies (e.g., statements, methods, or files) for each test and then runs
tests whose dependencies are modified. RTS is considered (1) safe
if it guarantees to select all affected tests (under standard assump-
tions [60], e.g., there are no changes in the environment between
test runs [25]), and (2) precise if it does not select unaffected tests.

Many RTS techniques have been proposed over the last several
decades [6, 21–23, 28, 44, 49, 54, 55, 59, 60, 68, 70, 77–80]; these
techniques differ in granularity on which they collect dependencies.
For example, Ekstazi [3, 19, 28] is a recent RTS technique that
collects dependencies on files, i.e., Ekstazi collects files that are used
by each test class and runs a test class (at the new project revision)
if any of its dependent files changes.
Motivation. Despite recent improvements of RTS techniques, no
RTS technique specially treats behavior-preserving changes, i.e.,
refactorings [24, 51, 52, 73]1, which are common in practice [63]. Our
key insight is that formally proven behavior-preserving changes [7,
14, 62] do not impact the test outcomes, and therefore no test needs
to be run after refactorings. However, the existing RTS techniques
run all tests affected by refactorings, e.g., if a developer renames a
method in class ĉ , and the method is used in class ĉ ′, Ekstazi selects
all tests that depend on either ĉ or ĉ ′. In other words, the existing
RTS techniques are imprecise (i.e., too conservative) for changes
made by refactorings.
Technique. We present the first step towards a refactoring-aware
RTS technique, dubbed Reks, which does not run tests that are
affected only by refactorings. At the same time, because refactor-
ings modify the structure of code, dependencies for tests need to
be updated, e.g., when a class is renamed (from ĉ to ĉ ′), each test
that depended on the old class ĉ has to depend on the new class
ĉ ′. Reks defines necessary rules to update the set of dependencies
of each test, after refactorings are performed, without running the
tests. These rules require a close integration of refactoring engines
and RTS tools. Whenever a user performs an automated refac-
toring, the refactoring engine should notify Reks about the files
that are affected by the refactoring and the way in which those
files are affected. Reks optimizes regression testing even in cases
when changes are made by a mix of refactorings and (manual) non-
refactoring changes.
Implementation. We implemented a prototype of the Reks rules
as a library, which can be easily integrated into any IDE. We further
integrated the Reks library into Eclipse [17] via a plugin.

1We consider traditional refactoring types that are frequently integrated in IDEs, e.g.,
rename method, extract method, etc.
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pre-submit testing post-submit testing

Executed on local machine continuous integration system

Uses RTS + Reks test-case prioritization

Runs selected tests all tests

Figure 1: Recent work, which involved Google developers,

described a testing process that includes two phases: pre-

submit and post-submit [20]. Pre-submit testing executes

only selected tests locally, while post-submit testing exe-

cutes all tests on a continuous integration system. Reks in-

tegrates into the pre-submit phase to skip tests affected only

by refactoring changes; the integration into the pre-submit

phase ensures that potential bugs introduced by the refac-

toring tools will be detected in the post-submit phase.

To ensure that Reks does not hide any bug introduced by the
refactoring engines [16, 27, 46, 67], we integrate Reks only in
the pre-submit testing phase, which happens on the developers’
machines [29]. Large companies, including Google, split testing
into the pre-submit and post-submit phases to balance the testing
load [20]; many other developers follow the same approach [29].
If any bug remains undetected in the pre-submit phase, the bug
would be detected in the post-submit phase that runs all available
tests. Figure 1 shows the way in which Reks should be integrated
into the testing process.
Evaluation. We evaluated Reks by measuring savings in the test-
ing effort. Specifically, we reproduced 100 refactoring tasks per-
formed by open-source developers of 37 projects on GitHub [63].
Our results show that Reks would not run, on average, 33% (max:
100% and SD: 33%) of available tests; these tests would be run by a
refactoring-unaware RTS. Additionally, we systematically ran 27
refactoring types on ten open-source projects and measured (1) the
percent of tests not run due to Reks, and (2) time to update the set
of dependencies with the Reks rules. The results, based on 74,160
refactoring tasks, show that Reks does not run, on average, 16%
of available tests (max: 97% and SD: 24%). Our experiments also
revealed that only 0.47% test methods fail due to bugs in refactoring
engines. Although these bugs would be hidden in the pre-submit
testing phase, the bugs would be detected in the post-submit testing
phase (see Figure 1). Finally, our experiments show that the update
rules are efficient regardless of the size of the target project.

2 MOTIVATING EXAMPLE

This section illustrates an existing RTS technique, shows the limi-
tations of the technique (and other existing RTS techniques), and
introduces a novel refactoring-aware RTS technique, dubbed Reks.
Project. Consider the Byte-Buddy project [11], which is a popular
light-weight Java library that supports runtime code generation and
manipulation; the project is hosted on GitHub. At revision 35da279,
the Byte-Buddy project had 3,150 test methods in 362 test classes
that execute in about 37 seconds. Developers then made several
changes and obtained a new project revision (f1dfb66). Figures 2a
and 2b show code before and after the change, respectively. The
change triggered the execution of all (362) available test classes
(https://travis-ci.org/raphw/byte-buddy).

Ekstazi. Suppose that the Byte-Buddy project uses the Ekstazi tool [3,
19, 28]. Ekstazi collects for each test class the set of dynamically
accessed files. The set of collected files includes both the executable
(e.g., Java classfiles) and non-executable (e.g., property) files.

During the execution of the tests at old revision (35da279), Ekstazi
would collect a set of dependencies for each test class. Figure 3a
shows a subset of dependencies for three test classes. Each depen-
dency is a pair of the file name and the checksum of the file.

After the developers make changes between 35da279 (old) and
f1dfb66 (new), Ekstazi analyzes the changes and runs only tests
that are affected by the changes. Specifically, to detect modified
files, Ekstazi computes the checksum for each file and finds the files
whose checksum has changed. Any test that depends on at least
one of the changed files is selected for the execution.

In our example, the developers modified AbstractBase and ForLo-

adedExecutable files. We can see in Figure 3 that some tests depend
on the modified files and are selected. Specifically, at new revision
f1dfb66, Ekstazi selects 1,248 test methods in 88 test classes (out
of 362 test classes) taking about 27 seconds (including time to find
modified files). Additionally, during the execution of the affected
tests, Ekstazi collects new dependencies for these tests. Figure 3b
shows the updated dependencies for our example.
Reks. What is interesting about the changes between 35da279 and
f1dfb66 is that these changes are refactorings, i.e., behavior preserv-
ing transformations. Specifically, by manually analyzing the change,
we found that a developer pulled up [71, 72] the wrap(List<Parame-

terDescription>)method from subclasses to the superclass (Abstra-
ctBase) between two revisions.

As we illustrated above, Ekstazi, like other existing RTS tech-
niques, is refactoring-unaware, i.e., it runs tests affected by refac-
torings. However, behavior-preserving changes [7, 14, 62] do not
impact the test outcomes, and therefore no test has to be run af-
ter refactorings. (We are aware that refactorings may introduce
bugs [16, 27, 46, 67], as we discussed in the introduction.)

Reks is a novel RTS technique that skips running the tests after
refactorings, but updates the dependencies for each test. Reks is
built on top of Ekstazi, i.e., it keeps dependencies on files and defines
the rules to update such dependencies. In our example, Reks would
not run any test between 35da279 and f1dfb66, but it would update
the set of dependencies to match those in Figure 3b. Reks also
supports mixed changes, i.e., changes with refactorings and other
manual edits. The following section defines the update rules.

3 TECHNIQUE

This section formally introduces the Reks update rules, and Sec-
tion 4 illustrates these rules using two refactoring types.

3.1 Preliminaries

Wewrite P t to denote the state of the project P at time t . P t includes
all files on disk, at time t , which belong to the project. Project
revisions are states of the project that are observable in the version-
control system (i.e., commits on GitHub). There can be one or more
changes between two project revisions [29, 61].

A test session identifies a point in time when tests were executed;
a test session is started either by a developer or a continuous in-
tegration system, e.g., Travis CI [33]. For simplicity of exposition,
we assume that a test session runs all affected tests. A test session

https://travis-ci.org/raphw/byte-buddy
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abs t rac t c l a s s Abs t r a c tB a s e { . . .
}
c l a s s Fo rLoadedExecu t ab l e extends Abs t r a c tB a s e {

@Override
protected P a r ame t e r L i s t wrap ( L i s t < Pa r ame t e rDe s c r i p t i on > v a l u e s ) {

return new E x p l i c i t ( v a l u e s ) ;
} . . .

} . . .

(a) Code before refactoring

abs t rac t c l a s s Abs t r a c tB a s e {
@Override
protected P a r ame t e r L i s t wrap ( L i s t < Pa r ame t e rDe s c r i p t i on > v a l u e s ) {

return new E x p l i c i t ( v a l u e s ) ;
} . . .

}
c l a s s Fo rLoadedExecu t ab l e extends Abs t r a c tB a s e { . . .
} . . .

(b) Code after refactoring

Figure 2: An example refactoring change in the Byte-Buddy project. Developers used Pull Up refactoring to move the method

wrap from sublasses (e.g., ForLoadedExecutable) to their superclass (AbstractBase).

JavaMethodTest
(ByteBuddyCommons, 4677), (JavaMethod, 1783), ...

JavaInstanceMethodTypeTest
(AbstractBase, 7263 ), (ForLoadedExecutable, 4267 ), ...

JavaInstanceMethodHandleTest
(AbstractBase, 7263 ), (ForLoadedExecutable, 4267 ), ...

(a) Dependencies for three tests at 35da279

JavaMethodTest
(ByteBuddyCommons, 4677), (JavaMethod, 1783), ...

JavaInstanceMethodTypeTest
(AbstractBase, 1076 ), (ForLoadedExecutable, 1291 ), ...

JavaInstanceMethodHandleTest
(AbstractBase, 1076 ), (ForLoadedExecutable, 1291 ), ...

(b) Dependencies for three tests at f1dfb66

Figure 3: Impact of refactoring changes from Figure 2 on Ekstazi dependencies. (a) shows test dependencies for three tests

before refactoring and (b) shows test dependencies for the same tests after refactoring. Each dependency is a pair of a file and

its checksum. We highlight the dependencies that are changed and tests that are affected between the two revisions.

can be triggered at any point in between revisions (i.e., pre-submit
testing phase) [29]. We write Pold to denote a project state after
the latest test session. A refactoring task identifies a point in time
when one of the refactoring types is invoked by a developer. We
write Pmiddle and Pnew to denote the states immediately before
and immediately after the latest refactoring task, respectively.

We define a sequence as a triple (Pold , Pmiddle , Pnew ). Figure 4
shows an example project timeline, including revisions, test ses-
sions, a refactoring task, and a sequence.

We define a function tests(P t ) that returns a set of available tests
at the state P t . Similarly, we define a function files(P t ) that returns
a set of files (i.e., normalized paths) that belong to the project at the
state P t .

Wewill use ĉ as a variable of type file, and function content(P t , ĉ )
returns the content of the file at state P t . We also define a function
cksum(content(P t , ĉ )) that computes the checksum of the file’s
content as a string at state P t ; the function returns a special value
if the file does not exist. If the state is clear from the context, we
simply write cksum(ĉ ). We use ŝ as a free variable of type string.

Further we overload the cksum function to accept a project
state as an argument, i.e., cksum(P t ). This function returns a set
of pairs (ĉ, cksum(ĉ )) for all files at the state P t , i.e., cksum(P t ) =
{(ĉ, cksum(ĉ )) | ĉ ∈ files(P t )}. We define a function deps(P t ,τ ),
s.t., deps(P t ,τ ) ⊆ cksum(P t ), where τ ∈ tests(P t ), that returns a
set of dependencies (i.e., a set of (ĉ, cksum(ĉ )) pairs) for a given test
in the given project state. The set of dependencies for each test is col-
lected by a code coverage tool [28, 35, 64, 80].Wewrite deps(P t ,τ )∪
(ĉ, cksum(ĉ )) to denote an addition of the pair (ĉ, cksum(ĉ )) to the
set of dependencies of τ for state P t . Similarly, wewrite deps(P t ,τ )\
(ĉ, ŝ ) to denote a removal of the pair (ĉ, ŝ ) from the set of depen-
dencies. Finally, we write deps(P t ,τ ) ⊎ (ĉ, cksum(ĉ )) to denote an
update of the set, i.e., deps(P t ,τ ) ⊎ (ĉ, cksum(ĉ )) = deps(P t ,τ ) \
(ĉ, ŝ )∪ (ĉ, cksum(ĉ )), where ŝ is an old checksum of ĉ . The addition,
removal, and update are overloaded to also work with a set of pairs.

· · · · · ·
Pold PnewPmiddle

Project Revisions

Test sessions Refactoring task

Figure 4: An example project development timeline that il-

lustrates revisions (which are available in version control

history of the project), test sessions (which are points in

time when developers run tests), refactoring tasks (which

are points in time when developers run one of the refactor-

ings), and various project states.

We define a function diff(Pold , Pnew ) that returns a set of mod-
ified files between two states, i.e., diff(Pold , Pnew ) = {ĉ ′ | ĉ ∈

files(Pold ) ∧ ĉ ′ ∈ files(Pnew ) ∧ cksum(ĉ ) , cksum(ĉ ′) ∧ ĉ = ĉ ′}.
We also define functions that return sets of added and deleted files,
i.e., added(Pold , Pnew ) = {ĉ | ĉ < files(Pold ) ∧ ĉ ∈ files(Pnew )}

and deleted(Pold , Pnew ) = {ĉ | ĉ ∈ files(Pold ) ∧ ĉ < files(Pnew )}.
Ξdev denotes files that are added, modified, and deleted by de-

velopers in a single sequence (Pold , Pmiddle , Pnew ), i.e., Ξdev =
diff(Pold , Pmiddle )∪added(Pold , Pmiddle )∪deleted(Pold , Pmiddle ).
Similarly, Ξr f t denotes a set of files that are modified by the in-
voked refactoring, i.e., Ξr f t = diff(Pmiddle , Pnew ). Further, we
write Π±f iles to denote a set of file pairs that describe replace-
ments of files, i.e., the first file of each pair is a file that is replaced
with the second file of the pair. Similarly, we write Π±elems to
denote a set of file pairs such that some code elements (e.g., meth-
ods or fields) from the first file are moved to the second file; both
files exist after the elements are moved. The last three sets (Ξr f t ,
Π±f iles and Π±elems ) can be extracted from the refactoring engine
when a refactoring task is invoked.
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3.2 Update Rules

Let (Pold , Pmiddle , Pnew ) be a sequence. We define three rules to
update the set of dependencies for τ at state Pnew , where τ ∈

tests(Pold ) ∧ τ ∈ tests(Pnew ).
Modified dependencies. For the set of dependencies that are mod-
ified by the refactoring engine (Ξr f t ), we have to recompute the
checksum for each of these dependencies. However, we do not up-
date the checksum of the dependencies that are also modified by
the developers (Ξdev ) in the current sequence.

deps(Pnew ,τ ) = deps(Pold ,τ ) ⊎ {(ĉ, cksum(ĉ )) | (1)

ĉ ∈ Ξr f t ∧ ĉ < Ξdev ∧ (ĉ, ŝ ) ∈ deps(Pold ,τ )}

Replaced files. For each pair of files that describes a file replace-
ment (Π±f iles ), we have to remove the old file from the set of
dependencies and include a new file in the set of dependencies. As
in the previous rule, we have to skip the files that are modified
by the developers (Ξdev ), prior to file replacement, in the current
sequence. Therefore, we update the set of dependencies as follows:

deps(Pnew ,τ ) = deps(Pold ,τ ) \ {(ĉ, ŝ ) | (2)

(ĉ, ĉ ′) ∈ Π±f iles ∧ ĉ < Ξdev } ∪ {(ĉ ′, cksum(ĉ ′)) |

(ĉ, ĉ ′) ∈ Π±f iles ∧ ĉ < Ξdev ∧ (ĉ, ŝ ) ∈ deps(Pold ,τ )}

Moved elements. For each pair of files that identifies movement
of some code elements from one file to another (Π±elems ), we have
to include the file into which the elements are moved to the set of
dependencies. At the same time, we keep the file from which the
elements are moved in the set of dependencies.

deps(Pnew ,τ ) = deps(Pold ,τ ) ∪ {(ĉ ′, cksum(ĉ ′)) | (ĉ, ĉ ′) ∈ (3)

Π±elems ∧ ĉ ′ < Ξdev ∧ (ĉ, ŝ ) ∈ deps(τ , Pold )}

Rules (2) and (3) are mutually exclusive, because the former
requires that the first element of each file pair does not exist at
Pnew , and the latter requires that the first element of each file pair
exists at Pnew . Rule (1) and Rule (2)/Rule (3) always commute for a
single sequence.

3.3 Advanced Considerations

Added and removed tests. There is no need to specially treat
newly added tests (i.e., τ < tests(Pold ) ∧ τ ∈ tests(Pnew )). These
tests will have no associated dependencies initially, so they will
always be selected by the RTS technique [28]. Deleted tests (i.e.,
τ ∈ tests(Pold )∧τ < tests(Pnew )) do not require special treatment
either, because their set of dependencies will not be used in the
subsequent test runs [28].
Relaxed definition of a sequence. In the update rules, we assume
that each sequence starts with a test session and ends at the time
of the first subsequent refactoring task. This means that there can
be an arbitrary number of manual changes between a test session
and a refactoring task, but there has to be at least one test session
between two refactoring tasks. We set this requirement only to
simplify the definition of diff, added, and deleted functions; there
is no such limitation in our implementation. This requirement is
relaxed by computing the modified, added, and deleted files at
every refactoring invocation by comparing the file checksum with

either the checksum at the previous refactoring task or previous
test session (whichever one is the latest in the project development
history) and then taking the union with already existing sets of
modified, added, and deleted files.
Overapproximation. Rule (3) may lead to an overapproximation
of the set of dependencies. Namely, if τ used only the moved ele-
ments in the original file, then τ does not have to depend on the
original file after the elements are moved. However, we are unable
to identify if τ should not depend on the original file any more,
because we keep the set of dependencies on files, and we do not
know the reason why τ depended on that file in the first place.
This is not a problem however, because overapproximation of the
set of dependencies does not impact the safety of regression test
selection [28].

We can reduce the overapproximation by reasoning about each
refactoring type independently. For example, consider the Move
Method refactoring that moves an instance method from file ĉ
to ĉ ′. Based on our Rule 3, we would always add ĉ ′ in the set of
dependencies. However, based on the definition of Move Method
refactoring (at least in the Eclipse JDT), there is no way that the
test could start depending on ĉ ′ in this case. Although case analysis
could be interesting, it would lead to a less elegant solution and it
would be specific to a refactoring engine.

4 UPDATE RULES ILLUSTRATED

This section illustrates the Reks rules using the Move Method and
Convert Anonymous to Nested refactoring types that are avail-
able in the Eclipse JDT [36]. We chose to present Move Method
because it is one of the most frequently used refactorings in prac-
tice [48]. We chose Convert Anonymous to Nested because it
creates a new file and it has significant impact on regression testing
(Section 5). In this section, with the goal to simplify the presenta-
tion, we assume that a developer runs a test session prior to each
refactoring task, i.e., Pold = Pmiddle .

4.1 Move Method

Move Method refactoring moves the selected (“target”) method
from file ĉ to ĉ ′ and updates all references to this method. A non-
static (i.e., “instance”) method can be moved via a parameter or a
field using a JDT refactoring [36]. Moving an instance method “via
parameter” means that we choose one of the parameter types as
the destination of the method. Moving a method “via field” means
that we choose one of the fields and use its type as the destination
of our method.
Test depends on the declaring file. Consider a test class that
depends on file ĉ and the target method is moved from ĉ to ĉ ′. An
example of such code is shown in Figure 5a. We invoke a refactoring
task onmethod S.m and choose D (which is the type of the parameter)
as the destination type. The result of the refactoring is shown in
Figure 5b. The execution of the refactoring task will collect the
following information:

Ξr f t = {S,D} Set of modified files
Π±f iles = ∅ Set of pairs that describe replaced files
Π±elems = {(S,D)} Set of pairs that described moved elements

Looking at the rules (1), (2), and (3), we can see that the Rule (2) is
not applicable in this case, because the set of pairs that describes the
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class T {

void t() {

new S().a();

}

}

class S {

void m (D d) {}

void a() {}

}

class D {}

(a) Before:
deps (Pold ,T ) = {(S, 52749)}

class T {

void t() {

new S().a();

}

}

class S {

void a() {}

}

class D {

void m () {}

}

(b) After moving m:
deps (Pnew ,T ) =

{(S, 93752), (D, 88792)}
Figure 5: Move instance method (via parameter) when a test

class depends on the class that declares the moved method.

class T {

void t() {

D.a();

}

}

class S {

void m (D d) {}

}

class D {

static void a() {}

}

(a) Before:
deps(Pold ,T ) = (D, 38562)

class T {

void t() {

D.a();

}

}

class S {}

class D {

static void a() {}

void m () {}

}

(b) After moving m:
deps(Pnew ,T ) = (D, 24759)

Figure 6: Move instance method (via parameter) when a test

class depends on the destination class.

replaced files is empty. (In fact, Move Method refactoring never
uses Rule (2), because this refactoring cannot introduce a new file.)

By applying the Rule (1), we update the checksum of the file
where the movedmethod was declared previously. This is necessary,
because some code was changed and the checksum is not the same
any longer. Specifically, we have the following:

deps(Pnew ,T ) = deps(Pold ,T ) ⊎ {(S, 93752)}
= {(S, 52749)} ⊎ {(S, 93752)} = {(S, 93752)}

Further, by applying Rule (3), we include the additional file (i.e.,
destination of the moved method) in the set of dependencies.

deps(Pnew ,T ) = {(S, 93752)} ∪ {(D, 88792)}

As discussed in Section 3.3, Move Method refactoring is one
of few that may overapproximate the set of dependencies and this
can be fixed by refining the rules for such refactorings with case
analysis. For example, in this particular example, we can see that
test class T does not actually use D after refactoring. In fact, if T

was using S.m before the refactoring, it would have already been
dependent on D.
Test depends on the destination file. Consider a test class that
depends on the destination file ĉ ′ of a Move Method refactoring
task. An example of such code is shown in Figure 6. We invoke
refactoring on S.m and choose D as the destination. As before, the

class T {

void t() {

new R().a();

}

}

class S {

void m (D d) {}

}

class D {}

class R {

void a() {}

void b() {

new S().m(new D());

}

}

(a) Before:
deps(Pold ,T ) = (R, 63958)

class T {

void t() {

new R().a();

}

}

class S {}

class D {

void m () {}

}

class R {

void a() {}

void b() {

new D().m();

}

}

(b) After moving m:
deps(Pnew ,T ) = (R, 83475)

Figure 7: Move instance method (via parameter) when a test

class depends on the class that references the method.

class T {

void t() {

new R().m();

}

}

class R {

void m() {

new P(){};

}

}

class P {}

(a) Before: deps(Pold ,T ) =
{(R, 52749), (P , 52749),

(P$1, 52749)}

class T {

void t() {

new R().m();

}

}

class R {

static class D extends P {}

void m() {

new D();

}

}

class P {}

(b) After: deps(Pnew ,T ) =
{(R, 22334), (P , 52749),

(D, 72892)}
Figure 8: Convert anonymous class to nested class when a

test class depends on the anonymous class.

execution of the refactoring will collect the following information:

Ξr f t = {S,D} Set of modified files
Π±f iles = ∅ Set of pairs that describe replaced files
Π±elems = {(S,D)} Set of pairs that described moved elements

It is necessary to apply Rule (1) because the checksum of the
destination file changed when the newmethod was added. We have:

deps(Pnew ,T ) = deps(Pold ,T ) ⊎ {(D, 24759)}
= {(D, 38562)} ⊎ {(D, 24759)} = {(D, 24759)}

We can see that the Rule (3) is not applicable to our test T, because
the source file (S) is not in the original set of dependencies for T,
i.e., (S, cksum(S )) < deps(Pold ,T ).
Test depends on a reference file. Consider a test class that de-
pends on a file that references the moved method. An example of
such code is shown in Figure 7. Test T is affected by the change
because the reference file (R) is modified when the method is moved
from S to D. The reasoning about the update rules is the same as
in the previous case when test was dependent on D, so we do not
discuss this case in more detail.
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4.2 Convert Anonymous Class to Nested

Convert Anonymous to Nested refactoring type converts an
anonymous class ĉ to a new nested class ĉ ′. This refactoring requires
two parameters: a name of the new class and a flag if the new class
should be an inner or a static nested class.

It is important to observe that although anonymous classes and
nested classes are in the same source file as their enclosing class,
they are in different classfiles from their enclosing class.

Consider, as shown in Figure 8, a test class T that depends on R,
P, and P$1; P$1 refers to the anonymous class. (A test that depends
on an anonymous class always depends on the enclosing class
too, because the anonymous class can only be referenced from its
enclosing class.) We invoke refactoring on new P() and choose D as
the name for the new nested class. The execution of the refactoring
task will collect the following information:

Ξr f t = {R} Set of modified files
Π±f iles = {(P$1,D)} Set of pairs that describe replaced files
Π±elems = ∅ Set of pairs that described moved elements

It is necessary to apply the Rule (1), because the checksum of
the enclosing class (R) always changes.

deps(Pnew ,T ) = {(R, 52749), (P , 52749), (P$1, 52749)} ⊎ {(R, 22334)}
= {(R, 22334), (P , 52749), (P$1, 52749)}

We also have to apply the Rule (2), as one of the files was replaced:

deps(Pnew ,T ) = {(R, 22334), (P , 52749), (P$1, 52749)}
\{(P$1, 52749)} ∪ {(D, 72892)} = {(R, 22334), (P , 52749), (D, 72892)}

5 EVALUATION

We assess the benefits of the Reks technique by answering the
following research question:

RQ1: How many tests would have been skipped by Reks had it
been used by open-source developers?

Furthermore, we evaluated the benefits of Reks by systematically
performing refactorings (one at a time) on open-source projects
and answering the following questions:
RQ2: How many tests does Reks skip on average if refactorings
are systematically performed?
RQ3: How many tests does Reks skip on average for various refac-
toring types if refactorings are systematically performed?
RQ4: What is the cost of the Reks update rules and how does this
cost compare to the test execution time?

Additionally, we collect the data to study the frequency of bugs
(i.e., non-behavior preserving transformations) introduced by refac-
toring engines. As wementioned earlier (see Section 1), Reks should
be integrated in the pre-submit testing phase, so that any poten-
tial bug is discovered in the post-submit phase, which executes all
available tests. Specifically, we answer the following question:
RQ5: How many test methods fail, on average, due to refactoring
tasks (performed by the Eclipse refactoring engine)?

5.1 Refactorings in Open-Source Projects

5.1.1 Methodology. We evaluated Reks in a realistic setting
with pure refactorings (i.e., only refactoring changes) and mixed

· · · · · ·

{t1, t2, t3} {t1, t2}

RC

Sr ef = | {t1,t2} |
| {t1,t2,t3} | =

2
3 = 67%

Figure 9: An example to illustrate the way we compute

Sr ef for a pure refactoring change (RC); the figure shows

tests run by Ekstazi, and Reks always runs zero tests for RC.

· · · · · ·

{t1, t2, t3} {t1, t2} {t1}

RC NRC

Sr ef = | {t1,t2}\{t1} |
| {t1,t2,t3} | =

1
3 = 33%

Figure 10: An example to illustrate the way we compute

Sr ef formixed changes; we split eachmixed changes to refac-

toring (RC) and non-refactoring (NRC) changes only to en-

able the experiment; the figure shows tests run by Ekstazi.

changes (i.e., refactorings + non-refactoring changes) performed by
open-source developers. We do not include results for only non-
refactoring changes, because Reks always gives the same results as
Ekstazi in those cases [28].

To find pure refactorings and mixed changes, we followed two
paths. First, we used projects and revisions detected in a recent study
that analyzed refactorings on GitHub [63]. Second, we searched
on GitHub for revisions with the commit messages that include
either “refactor”, “rename”, or “move” in Java repositories of two
organizations: Apache and Google.

We executed the following steps for each discovered pair of
(Project ,Revision) with the goal to select the pairs for our study:
a) Clone the Project and checkout the Revision.
b) If the Project does not use Maven, which is currently supported

by Reks, discard the (Project ,Revision) pair.
c) Build the Project (for the Revision and its parent revision). If

the build is not successful, discard the pair. We had to discard a
large number of pairs due to the broken builds. However, this
was not surprising [75].

d) Manually confirm (by reading the diff) that Revision is a pure
refactoring or a mixed change.

Pure refactorings. To evaluate Reks on pure refactorings, we
(1) checkout the parent revision of the Revision, (2) execute test
classes with Reks (to collect dependencies for each test class), (3) re-
play the refactoring from the Revision, and (4) execute test classes
with Reks (which always executes zero tests in this case but updates
dependencies). We also collect, at Revision, the set of all available
tests (T available ) and the set of test classes that are executed with
Ekstazi, i.e., refactoring-unaware technique (T r ef ). We compute
the percentage of test classes that are not run due to Reks as Sr ef =
|T r ef | / |T available | × 100. We illustrate this experiment for one
pure refactoring in Figure 9.
Mixed changes. To evaluate Reks on mixed changes we (1) manu-
ally split each mixed change into refactoring and non-refactoring
changes (the splitting is needed only for the evaluation, but not for
the actual use of the tool), (2) execute test classes with Reks (to
collect dependencies), (3) replay only refactoring changes, (4) exe-
cute test classes with Reks (which executes zero tests, but updates
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0 20 40 60 80 100
Figure 11: Distribution of Sr ef for refactorings performed by

developers of open-source projects found onGitHub; the red

line shows the median and the star shows the average.

1 discover_affected_tests(refactoring, project):
2 run_tests_with_reks_without_rules(project)
3 elements = find_code_elements(refactoring, project)
4 for el in elements:
5 refactoring_tasks = create_tasks(refactoring, project, el)
6 for task in refactoring_tasks:
7 configure_properties(task)
8 try:
9 if check_preconditions(task):
10 refactored_project = perform(task)
11 else:
12 continue
13 except exc:
14 continue
15 if is_successful(compile(refactored project)):
16 affected_tests = analyze(refactored_project)
17 store_affected_tests(affected_tests, task)
18 undo(task)

Figure 12: Procedure for systematically discovering affected

test classes for one given refactoring and project.

the dependencies and records the set of tests selected by Ekstazi:
T r ef ), (5) replay non-refactoring changes, (6) execute test classes
with Reks to record the available (T available ) and selected test
classes (Tnon−r ef ). (The order in which we replay refactoring and
non-refactoring changes does not affect the outcome of our experi-
ments.) We compute the percentage of test classes that are not run
due to Reks as Sr ef = |T r ef \ Tnon−r ef | / |T available | × 100. We
illustrate this experiment for one mixed change in Figure 10.

5.1.2 RQ1: Howmany tests would have been skipped by Reks had

it been used by open-source developers? Following our methodology,
we performed our experiment on 100 pairs (17 are from prior study
of refactorings [63] and 8% are mixed changes). Similar to recent
work [63], due to the space constraints, we do not include the info
for each (project, revision) pair in this paper; the list is available at
http://cozy.ece.utexas.edu/reks.

Boxplot in Figure 11 shows the distribution of Sr ef values for all
100 pairs. In sum, we find that Sr ef for all pairs is 33% on average
(min: 0%; max: 100%). We also find that Sr ef for pure refactorings
is 34% on average (min: 0%; max: 100%). Finally, Sr ef for mixed
changes is 11% on average (min: 0%; max: 64%).

5.2 Systematically Performed Refactorings

5.2.1 Methodology. We follow a systematic methodology to
evaluate the impact of refactorings on RTS (RQ2, RQ3, RQ4, and
RQ5) [27]. Namely, for a given project, we perform refactorings to
all applicable program elements (e.g., methods), up to 5 per file, and
measure the impact of each refactoring type on regression testing.

Figure 12 shows the procedure to discover affected tests for one
given refactoring type and one project. (We modify a procedure pre-
sented in an earlier work used for testing refactoring engines [27].)

The procedure takes two inputs: the refactoring type to perform
and a project on which refactoring type will be performed.

In the first step (line 2), we run available test classes (T available )
for the given project with Reks. This step collects dependencies
for all test classes, as described in Section 2 (i.e., deps(Pmiddle ,τ )

where τ ∈ tests(Pmiddle )). The collected dependencies are stored
on disk in a Reks specific directory, which is used later in the pro-
cedure. In the second step (line 3), we find code elements for the
project on which the given refactoring type can be invoked and
create for each code element (line 5) a set of refactoring tasks. For
example, for Move Method, the set of code elements contains
all methods in the project, and the set of tasks includes moving
each method to another class. In the third step (line 6), for each
refactoring task, the procedure configures the refactoring task pa-
rameters (line 7); we discuss the details of the task configuration in
Section 5.2.3. In the fourth step (line 9), we check if the refactoring
task can be applied. Each refactoring has preconditions that need
to be satisfied before a refactoring task can be performed. For JDT’s
MoveMethod, one of the preconditions is not satisfied if the target
class already contains a method with the same name and same num-
ber of arguments as the method being moved. If all precondition
checks succeed, we perform the refactoring task (line 10) and obtain
the refactored project (i.e., Pnew ). We additionally check (line 15)
that the refactored project compiles, which may not be the case if
the refactoring engine encounters a bug.

In the final step (line 16), we analyze code with Reks to discover
affected tests (T r ef ); our goal is only to compute the percentage of
tests that are not run by Reks but are selected with Ekstazi (Sr ef =
|T r ef | / |T available | × 100). Before the analysis phase is invoked,
we need to compile the refactored project because Reks detects
modified files by analyzing classfiles (rather than source files). Then
Reks uses dependencies, which were saved on line 2, to find what
tests are (not) affected by the refactoring task. On line 17 we store
the results of Reks analysis, which we post-process to compute
Sr ef . Finally, we undo (using git clean -xfd; git reset --hard)
the effects of the latest refactoring task (line 18), to prepare for the
next iteration of the loop.

5.2.2 Projects. We briefly describe projects under study; these
are the projects that we pass (one at a time) as the second argument
to our procedure in Figure 12. Table 1 shows the list of the projects
used in our study; we chose the projects that were used frequently
in recent studies on regression testing. For each project, we show a
name; a short description; repository URL from which we cloned
the project; and the latest revision (SHA) of the project at the time of
our study. Additionally, Table 1 shows the number of lines of code
(LOC) measured with sloccount [65]; the number of test classes; and
instruction, branch, and class coverages obtained with JaCoCo [35].
The last two rows show the total (

∑
) and average (Avg) numbers

for the LOC, test classes, and code coverage.

5.2.3 Refactoring Setup. Although various tools/IDEs may offer
different refactorings [17, 34, 50, 53], we focus on 27 (i.e., all avail-
able) refactorings of the Eclipse JDT [17, 37]. We selected Eclipse
because it is one of the most widely used tools and offers a rich set
of refactorings. We do not include a description of each refactor-
ing in this paper, but many resources are available in the existing
literature [24, 36, 58].

http://cozy.ece.utexas.edu/reks
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Table 1: Projects Used in the Evaluation with Systematically Performed Refactorings.

Project Description URL SHA LOC

#Test

classes

Coverage

instr. branch class

Coll Extension of Java Collections apache/commons-collections c87eeaa4 60251 159 83 77 95
Config Generic Configuration Interface apache/commons-configuration 8dddebf1 64341 163 87 83 98
DBCP DB Connection Support apache/commons-dbcp 784fb496 20547 30 45 56 95
IO Library to Assist IO apache/commons-io 9990c666 29159 100 86 82 100
JClassmate Introspecting Generic Type Info FasterXML/java-classmate ef2fb7cd 6797 34 94 89 100
JObjectDiff Diff and Merge Java Objects SQiShER/java-object-diff 751574b8 9976 61 89 84 94
Lang Manipulation of Java Classes apache/commons-lang 17a6d163 69014 134 94 89 100
Net Basic Internet Protocols apache/commons-net 4450add7 26928 42 32 26 38
Pebble Templating Engine Inspired by Twig PebbleTemplates/pebble f8e2e7b0 13375 30 86 79 96
Stateless4J Lightweight Java State Machine oxo42/stateless4j 4f12a5cb 1702 9 53 43 64∑

N/A N/A N/A 302090 761 N/A N/A N/A
Avg N/A N/A N/A 30209.0 76.1 74.9 70.8 88.5

Each refactoring type accepts a set of (property, value) pairs that
define the configuration of the refactoring task. For example, for
Extract Method the parameters include: (1) new name, which
specifies the name of the newly created method, (2) visibility, which
specifies the access modifier of the newly created method, and
(3) replace duplicate, which replaces duplicate code in the same
class with the invocation of the newly created method. The values
used in our study closely follow prior work on systematic testing
of refactoring engines [27].

Table 2: Percent of Test Classes Not

Run Due to Reks (Sr ef ) Per Project

for Systematically Performed Refac-

toring Changes.

Project

Sr ef

Max Med Avg STD

Coll 48.43 1.26 3.29 6.45
Config 72.39 4.29 13.75 18.02
DBCP 89.66 20.69 26.57 22.29
IO 63.00 9.00 10.88 10.07
JClassmate 85.29 32.35 37.07 25.51
JObjectDiff 85.25 8.20 21.37 23.48
Lang 52.24 1.49 4.59 7.09
Net 38.10 2.38 4.25 7.37
Pebble 96.67 96.67 67.30 40.40
Stateless4J 77.78 11.11 22.81 19.89

Max 96.67 96.67 67.30 40.40
Avg 70.88 N/A 21.19 N/A

5.2.4 Implementa-

tion. We implemented
the procedure from
Figure 12 as an Eclipse
plugin [18] that sup-
ports all refactorings
available in Eclipse
JDT. We build on top
of an existing plugin,
called RTR [27]. The
key changes are re-
lated to Reks invo-
cations at appropri-
ate places and storing
the results of Reks
analysis. We invoke
Reks as a separate
Java process using
ProcessBuilder. As the
result of each Reks
analysis invocation, we save three separate outputs: (1) build output
(recall that we need to compile the project before we invoke Reks),
(2) refactoring task details, and (3) the list of affected tests as re-
ported by Reks analysis. We save the output of the build to check if
the compilation and build were successful. We save the refactoring
task details to inspect the outputs and confirm the correctness of
our implementation.

We apply refactoring tasks only on non-test classes to properly
measure the impact of refactorings. Note that dependencies on test
classes are rare [28], which means that applying refactoring tasks
on a test class would modify only that single class.

We have checked the correctness of the implementation, on a
number of examples, by comparing the sets of dependencies after
applying the Reks update rules and sets of dependencies collected
by Ekstazi. We found that the Reks rules give the expected results.

5.2.5 Collected Numbers. We ran experiments on an Intel Xeon
CPU @ 2.60GHz with 16GB of RAM, running Ubuntu 16.04LTS.

Following our procedure in Figure 12, for each project and refac-
toring pair, we collected the number of refactoring tasks, time to
execute the procedure, and average Sr ef . In sum, we ran a total
of 74,160 refactoring tasks in over 964 hours. We observed that a
few refactoring tasks led to exceptions or compilation errors (∼5%),
which is slightly higher than reported in prior studies on testing
refactorings [27]. Note that these cases (i.e., bugs in the refactoring
engine that lead to non-compilable code) do not impact safety of
our technique, because a user would not run the tests in a project
that does not compile. In Section 5.2.9, we discuss bugs that change
the program behavior.

5.2.6 RQ2: How many tests does Reks skip on average if refactor-

ings are systematically performed? Table 2 shows the max, median,
average, and standard deviation of Sr ef per project (measured across
all refactoring types). For example, we can see that max, median,
and average Sr ef for DBCP are 90%, 21%, and 27%, respectively. The
average across all refactoring tasks is 16% (not shown in the table).
We find that the impact of refactorings on each project can be sub-
stantial with max Sr ef of 97%. Note that our experiments perform
one refactoring at a time, and the impact of multiple refactorings is
likely to be higher because they are likely to modify more classes.

5.2.7 RQ3: Howmany tests does Reks skip on average for various

refactoring types if refactorings are systematically performed? We
measured the average Sr ef per refactoring type (across all projects)
for all refactoring types available in Eclipse IDE. Table 3 shows the
numbers for each refactoring type. (Max values are similar because
many refactoring types impact many tests in Pebble.) Introduce
Param. Obj., on average, has the biggest impact on regression
tests (with Sr ef of 27%, followed by Change Signature (24%) and
Introduce Indirection (24%). On the other side, we find that
Infer Generic Type Args has the smallest impact on regression
testing (with Sr ef of 0.05%), followed by Rename Local (0.70%);

https://github.com/apache/commons-collections
https://github.com/apache/commons-configuration
https://github.com/apache/commons-dbcp
https://github.com/apache/commons-io
https://github.com/FasterXML/java-classmate
https://github.com/SQiShER/java-object-diff
https://github.com/apache/commons-lang
https://github.com/apache/commons-net
https://github.com/PebbleTemplates/pebble
https://github.com/oxo42/stateless4j
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Table 3: Percent of Test Classes Not Run Due to Reks Per

Refactoring Type (Systematically Performed Refactorings).

Refactoring

Sr ef

Max Med Avg STD

1 Rename Field 96.67 3.73 13.04 20.42
2 Rename Method 96.67 10.00 22.32 27.12
3 Rename Local 96.67 0.00 0.70 2.91
4 Move Method 96.67 7.46 13.69 13.90
5 Change Signature 96.67 10.00 23.65 29.11
6 Extract Method 96.67 10.00 19.27 24.07
7 Extract Local 96.67 9.43 18.01 22.51
8 Extract Constant 96.67 7.98 15.00 21.22
9 Inline Constant 96.67 3.00 9.16 15.96
10 Inline Method 96.67 2.52 11.95 20.87
11 Inline Local 96.67 4.48 18.48 28.08
12 Convert Local to Field 96.67 4.00 18.11 27.95
13 Convert Anonymous 96.67 7.46 22.21 28.78
14 Move Type to New File 72.13 2.99 9.17 14.71
15 Extract Superclass 96.67 8.82 16.85 24.35
16 Extract Interface 96.67 2.38 9.59 18.55
17 Use Supertype 96.67 0.00 2.50 11.86
18 Push Down 96.67 0.00 2.15 10.71
19 Pull Up 96.67 14.29 21.10 23.55
20 Extract Class 96.67 5.00 18.97 26.34
21 Introduce Param. Obj. 96.67 10.34 27.01 32.42
22 Introduce Indirection 96.67 9.52 23.61 27.68
23 Introduce Factory 96.67 2.52 15.01 25.90
24 Introduce Parameter 96.67 2.38 9.29 18.33
25 Encapsulate Field 96.67 2.38 12.04 21.60
26 Generalize Type 96.67 3.00 15.75 25.24
27 Infer Generic Type Args 12.58 0.00 0.05 0.60

Max 96.67 14.29 27.01 32.42
Avg 92.64 N/A 14.40 N/A

Table 4: Execution Time for Reks, RetestAll, and Ekstazi.

Project R

¯

eks [s] A

¯

ll [s] Ekstazi [s] R

¯

/A

¯

[%]

Coll 22.95 59.01 34.57 38.90
Config 14.32 54.14 33.80 26.46
DBCP 6.88 86.71 35.77 7.93
IO 4.34 132.69 11.92 3.27
JClassmate 2.85 3.45 4.15 82.80
JObjectDiff 19.93 35.62 35.67 55.95
Lang 14.85 43.45 17.85 34.17
Net 3.87 63.07 4.93 6.13
Pebble 1.20 6.20 5.90 19.42
Stateless4J 1.77 2.24 2.75 79.03

Max 22.95 132.69 35.77 82.80
Avg 9.30 48.66 18.73 35.41

renaming a local variable rarely (only if used in an anonymous class)
modifies classfiles, which are collected by Reks as dependencies.

5.2.8 RQ4: What is the cost of the Reks update rules and how

does this cost compare to the test execution time? We measured (Ta-
ble 4) the update time for refactoring types that recompute cksum
of dependencies. To measure the time, we altered the procedure in
Figure 12 to invoke the update rules during Maven build on line 16.
Specifically, we compare the time to build project with Maven that

invokes update rules (second column) with the time to run all tests
during the Maven build, i.e., RetestAll (third column), and time to
build project with Maven with Ekstazi (fourth column). Update
rules take ∼1sec for all projects and the rest is taken by Maven. The
table also shows the ratio of Reks and RetestAll (the last column).

5.2.9 RQ5: How many test methods fail, on average, due to refac-

toring tasks (performed by the Eclipse refactoring engine)? We pro-
posed (see Section 1) that Reks should be a part of the pre-submit
testing phase, because we are aware that the existing refactoring
engines do not always preserve program behavior [27, 38, 39, 66].
We measured the average percent of failing test methods as the
number of failing test methods / total number of test methods. To
obtain this measure we modified line 16 in Figure 12 to run the tests
(rather than to invoke the analysis). The average percent of failing
test methods was only 0.47%; we first computed the value for each
project and then the average across all projects. In the future, we
believe that formally proven refactoring transformations [7, 14, 62]
will enable the use of Reks in the post-submit phase.

6 DISCUSSION

RTS granularity. Reks rules are applicable only to RTS techniques
that collect dependencies on classes [28, 41, 42, 55, 64]. The rules
for RTS techniques with different selection granularity would differ.
Consider TestTube [13], an RTS techniques that collect dependen-
cies on methods [55]. The modification rules for TestTube can be
more precise than the rules for Ekstazi, e.g., if a method being
moved from one class (ĉ) to another (ĉ ′) is the only method used
by a test, then there is no reason for the test to depend on ĉ after
the refactoring task. At the same time, rules for some refactoring
types would be more complex. Consider an invocation of Extract
Method on code inside a method m to a newmethod n. The rules for
TestTube would have to add method n in the set of dependencies for
tests that already depend on m, because TestTube does not know if
the extracted code was executed by a test. This overapproximation
is similar to Move Method refactoring in Reks. We plan to explore
the update rules for other RTS techniques in the future.
Open-source vs. systematic refactorings. The difference in av-
erage savings is due to the difference in the set of refactoring types.
Some refactoring types that are performed only systematically (e.g.,
Infer Generic Type Args) have low impact on tests, and some
refactoring types (e.g., rename class), which have big impact on
tests, are only performed in open-source projects.
Safety. The Reks technique is based on two assumptions: refactor-
ing transformations are behavior-preserving and Ekstazi is safe. We
discussed the former in detail in Section 1. As for the latter, a few
researchers semi-formally proved safety of RTS techniques [64].
Future work should formally prove correctness of RTS techniques
and develop a testing framework to check safety of RTS tools.

7 THREATS TO VALIDITY

External. Our results might not generalize beyond the projects
used in the study. To mitigate this threat, we used projects of dif-
ferent sizes, which are also used in different application domains.
We also evaluated the impact of refactorings on regression testing
using a large number of refactorings in open-source projects.
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We have evaluated our rules on the refactoring types that are
available in the Eclipse JDT. However, many popular refactoring
types (e.g., rename) are shared among all IDEs, so our rules should
be directly applicable. In the future, we plan to study if Reks is
applicable on refactorings that are unique to other IDEs.
Internal. Reks and our scripts may contain bugs, which may im-
pact our conclusions. We used meta information collected during
our procedure (Figure 12) to manually check the results for a large
number of refactorings. With unit tests, we confirmed that Reks
and Ekstazi behave the same for non-refactoring changes.
Construct. When systematically applying refactorings, we mea-
sured the impact of one refactoring at a time. Our goal was to eval-
uate the impact of each refactoring separately, but evaluating the
impact of the combination of refactorings is an interesting future
research direction. We also limit the number of code elements that
we use in each compilation unit to make the experiment feasible.

8 RELATEDWORK

There has been a lot of work on regression test selection [6, 21–
23, 28, 44, 49, 54, 55, 59, 60, 68, 70, 77–80] and refactorings [24,
51, 52, 73]. However, prior work mostly explored these two topics
independently.We discuss work on (1) combining regression testing
and refactorings [57], (2) testing refactorings [16, 27, 47, 66], (3) RTS
techniques, and (4) refactorings.
Regression testing guided by refactorings. Rachatasumrit and
Kim [57] found that existing regression tests are inadequate to
validate the correctness of refactorings. They evaluated the qual-
ity of regression tests for three real-world Java applications. The
results showed that only 22% of changes are covered by the tests.
Additionally, the results showed that only 38% of regression tests
cover at least one refactoring change. Mongiovi et al. [46] proposed
an approach to improve regression test suites via automated test
generation. Their technique is guided by the coverage of refactored
changes. They developed two tools—Safira, which identifies the
changes in program elements, and SafeRefactorImpact, which gen-
erates random tests using Randoop [56]—with the goal to exercise
the changed elements. In a follow-up work, Soares et al. [67] imple-
mented a prototype tool that runs concurrently with an IDE and
generates tests to cover the changed code, while the code is being
edited. Recently, Alves et al. [1], presented a test suite prioritization
technique to faster detect bugs introduced by refactorings.

Unlike prior work, we systematically evaluated the impact of
refactorings on RTS and proposed update rules to modify the de-
pendencies for each test class, with the goal to avoid unnecessary
test executions for behavior-preserving transformations [14, 62].
Testing manual and automated refactorings. Alves et al. [2]
implemented a code review tool called RefDistiller (which consists
of RefChecker and RefSeparator) that detects anomalies introduced
by manual refactoring edits. GhostFactor [26] is similar to RefDis-
tiller in that it aims to check the correctness of manual refactorings
automatically using a set of predefined conditions. Our work targets
automated transformations and speeds up regression testing.

A lot of work was done on automated testing of refactoring
engines. Daniel et al. [16] proposed a syntax tree generator, called
ASTGen, which systematically generates a large number of Java
programs based on the given imperative description. Gligoric et

al. [27] introduced RTR, which systematically applies refactorings
on the given set of applications. The results showed that the failure
rate for the Eclipse refactoring engine (due to compilation errors)
was 1.4% for JDT. Soares et al. [66] followed a similar approach with
ASTGen to generate a set of test inputs exhaustively to detect bugs
that modify the program behavior.

Reks differs from the prior work as the main purpose of Reks is
to speed up regression testing by skipping tests that are affected
only by refactorings. In cases when an automated refactoring intro-
duce a compilation error or a refactoring task throws an exception,
the developer would not run the tests and Reks does not update
dependencies. Because of changes that modify program behavior,
we suggest to integrate Reks in the pre-submit testing phase [20].
Regression test selection. There has been several decades of re-
search on RTS. Several surveys nicely describe various aspects of
RTS [6, 22, 79]. Most of the RTS techniques differ in the granularity
on which they collect dependencies. Google TAP [10] keeps de-
pendencies among projects. Ekstazi [28] collects dependencies on
files. FaultTracer [80] and TestTube [13] collect dependencies on
methods, Echelon [68] collects dependencies on basic blocks, etc.
To the best of our knowledge, Reks is the first refactoring-aware
RTS technique.
Refactorings. Similarly to RTS, there was a lot of work related to
refactorings. Researchers have explored refactorings for various
languages and domains [4, 5, 8, 9, 15, 32, 43, 45, 69, 76]. Closely
related is work by Kim et al. [40] that introduced RefFinder, a tool
to detect manual refactorings in code repositories. We evaluated
Reks on a large number of refactorings performed by open-source
developers. In the future, we can deploy RefFinder to help us detect
revisions of interest.

9 CONCLUSIONS

We presented the first step toward refactoring-aware RTS technique,
called Reks. Unlike the existing RTS techniques that run tests re-
gardless of a change, Reks specially treats code changes made by
automated behavior-preserving transformations (i.e., refactoring).
When a refactoring is performed, Reks updates the dependencies
for the affected tests and does not run any test. Based on our study
of refactorings performed by developers of open-source projects,
Reks does not run, on average, 33% of available tests (which would
be run with a refactoring-unaware technique). Also, based on our
systematic study on several popular open-source projects, we find
that Reks can avoid running up to 97% tests (16% on average). We
integrated Reks with Eclipse via a plugin, which helps develop-
ers to save regression testing time in the pre-submit testing phase.
Although we currently expect that developers run all tests in the
post-submit testing phase, our work present a way in which for-
mally proven refactorings and RTS could work in the future in all
testing phases.
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